Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37514842

RESUMO

Spiking neural networks (SNNs) have attracted considerable attention as third-generation artificial neural networks, known for their powerful, intelligent features and energy-efficiency advantages. These characteristics render them ideally suited for edge computing scenarios. Nevertheless, the current mapping schemes for deploying SNNs onto neuromorphic hardware face limitations such as extended execution times, low throughput, and insufficient consideration of energy consumption and connectivity, which undermine their suitability for edge computing applications. To address these challenges, we introduce EdgeMap, an optimized mapping toolchain specifically designed for deploying SNNs onto edge devices without compromising performance. EdgeMap consists of two main stages. The first stage involves partitioning the SNN graph into small neuron clusters based on the streaming graph partition algorithm, with the sizes of neuron clusters limited by the physical neuron cores. In the subsequent mapping stage, we adopt a multi-objective optimization algorithm specifically geared towards mitigating energy costs and communication costs for efficient deployment. EdgeMap-evaluated across four typical SNN applications-substantially outperforms other state-of-the-art mapping schemes. The performance improvements include a reduction in average latency by up to 19.8%, energy consumption by 57%, and communication cost by 58%. Moreover, EdgeMap exhibits an impressive enhancement in execution time by a factor of 1225.44×, alongside a throughput increase of up to 4.02×. These results highlight EdgeMap's efficiency and effectiveness, emphasizing its utility for deploying SNN applications in edge computing scenarios.

2.
Entropy (Basel) ; 24(11)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36421492

RESUMO

Wireless sensor network deployment should be optimized to maximize network coverage. The D-S evidence theory is an effective means of information fusion that can handle not only uncertainty and inconsistency, but also ambiguity and instability. This work develops a node sensing probability model based on D-S evidence. When there are major evidence disputes, the priority factor is introduced to reassign the sensing probability, with the purpose of addressing the issue of the traditional D-S evidence theory aggregation rule not conforming to the actual scenario and producing an erroneous result. For optimizing node deployment, a virtual force-directed particle swarm optimization approach is proposed, and the optimization goal is to maximize network coverage. The approach employs the virtual force algorithm, whose virtual forces are fine-tuned by the sensing probability. The sensing probability is fused by D-S evidence to drive particle swarm evolution and accelerate convergence. The simulation results show that the virtual force-directed particle swarm optimization approach improves network coverage while taking less time.

3.
Sensors (Basel) ; 21(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34372239

RESUMO

Wireless sensor networks are appealing, largely because they do not need wired infrastructure, but it is precisely this feature that renders them energy-constrained. The duty cycle scheduling is perceived as a contributor to the energy efficiency of sensing. This paper developed a novel paradigm for modeling wireless sensor networks; in this context, an adaptive sensing scheduling strategy is proposed depending on event occurrence behavior, and the scheduling problem is framed as an optimization problem. The optimization objectives include reducing energy depletion and optimizing detection accuracy. We determine the explicit form of the objective function by numerical fitting and found that the objective function aggregated by the fitting functions is a bivariate multimodal function that favors the Fibonacci tree optimization algorithm. Then, with the optimal parameters optimized by the Fibonacci tree optimization algorithm, the scheduling scheme can be easily deployed, and it behaves consistently in the coming hours. The proposed "Fibonacci Tree Optimization Strategy" ("FTOS") outperforms lightweight deployment-aware scheduling (LDAS), balanced-energy scheduling (BS), distributed self-spreading algorithm (DSS) and probing environment and collaborating adaptive sleeping (PECAS) in achieving the aforementioned scheduling objectives. The Fibonacci tree optimization algorithm has attained a better optimistic effect than the artificial bee colony (ABC) algorithm, differential evolution (DE) algorithm, genetic algorithm (GA) algorithm, particle swarm optimization (PSO) algorithm, and comprehensive learning particle swarm optimization (CLPSO) algorithm in multiple runs.


Assuntos
Algoritmos , Árvores , Fenômenos Físicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA