RESUMO
A novel electron donor-acceptor (EDA) complex/copper catalysis model has been proposed for the construction of 2,3-diarylpropionitriles under visible light conditions. The developed protocol proceeds via intermolecular charge transfer between the photoactive EDA complex of dibutamine (DBA), aryl thianthrenium salts, and trimethylsilyl cyanide (TMSCN), followed by a copper catalytic cycle. UV-vis absorption measurements confirm the participation of EDA complexes as reactive intermediates. This three-component process proceeds smoothly in the presence of pharmaceutically relevant core structures and sensitive functional groups, which offers the possibility of the precise editing of drug molecules with important scaffolds.
RESUMO
An efficient visible light/copper-enabled arylation and alkenylation of phosphorothioates with thianthrenium salts via a C(sp2)-S cross-coupling reaction have been demonstrated. This strategy uses aryl/alkenyl thianthrenium salts as new electrophilic reagents, which can be easily prepared by the site-selective C-H thianthrenation of arenes/alkenes with high regioselectivity. Mechanistic studies revealed a crucial role of the in situ formed copper-sulfur complex, which undergoes a facile SET process with the thianthrenium salts under visible light conditions, thereby successfully achieving the desired cross-coupling reactivity.
RESUMO
In this Letter, we use quantum trajectory theory to simulate heterodyne detection of narrow bandwidth superradiant lasing from an incoherently excited atomic ensemble. To this end, we describe the system dynamics and account for stochastic measurement backaction by second-order mean-field theory. Our simulations show how heterodyne measurements break the phase symmetry, and initiate the atomic coherence with a random phase and a long temporal phase coherence. More importantly, our theory allows direct simulation of experimental procedures for extraction of spectral information which do not lend themselves to evaluation with the quantum regression theorem.
RESUMO
Hydrogen, a clean resource with high energy density, is one of the most promising alternatives to fossil. Proton exchange membrane water electrolyzers are beneficial for hydrogen production because of their high current density, facile operation, and high gas purity. However, the large-scale application of electrochemical water splitting to acidic electrolytes is severely limited by the sluggish kinetics of the anodic reaction and the inadequate development of corrosion- and highly oxidation-resistant anode catalysts. Therefore, anode catalysts with excellent performance and long-term durability must be developed for anodic oxygen evolution reactions (OER) in acidic media. This review comprehensively outlines three commonly employed strategies, namely, defect, phase, and structure engineering, to address the challenges within the acidic OER, while also identifying their existing limitations. Accordingly, the correlation between material design strategies and catalytic performance is discussed in terms of their contribution to high activity and long-term stability. In addition, various nanostructures that can effectively enhance the catalyst performance at the mesoscale are summarized from the perspective of engineering technology, thus providing suitable strategies for catalyst design that satisfy industrial requirements. Finally, the challenges and future outlook in the area of acidic OER are presented.
RESUMO
Exploring emerging two-dimensional (2D) van der Waals (vdW) semiconducting materials and precisely tuning their electronic properties at the atomic level have long been recognized as crucial issues for developing their high-end electronic and optoelectronic applications. As a III-VI semiconductor, ultrathin layered hexagonal GaTe (h-GaTe) remains unexplored in terms of its intrinsic electronic properties and band engineering strategies. Herein, we report the successful synthesis of ultrathin h-GaTe layers on a selected graphene/SiC(0001) substrate, via molecular beam epitaxy (MBE). The widely tunable quasiparticle band gaps (â¼2.60-1.55 eV), as well as the vdW quantum well states (QWSs) that can be strictly counted by the layer numbers, are well characterized by onsite scanning tunneling microscopy/spectroscopy (STM/STS), and their origins are clearly addressed by density functional theory (DFT) calculations. More intriguingly, distinctive 8|8E and 4|4P (Ga) mirror twin boundaries (MTBs) are identified in the ultrathin h-GaTe flakes, which can induce decreased band gaps and prominent p-doping effects. This work should deepen our understanding on the electronic tunability of 2D III-VI semiconductors by thickness control and line defect engineering, which may hold promise for fabricating atomic-scale vertical and lateral homojunctions toward ultrascaled electronics and optoelectronics.
RESUMO
Kagome materials have recently garnered substantial attention due to the intrinsic flat band feature and the stimulated magnetic and spin-related many-body physics. In contrast to their bulk counterparts, two-dimensional (2D) kagome materials feature more distinct kagome bands, beneficial for exploring novel quantum phenomena. Herein, we report the direct synthesis of an ultrathin kagome-structured Co-telluride (Co9Te16) via a molecular beam epitaxy (MBE) route and clarify its formation mechanism from the Co-intercalation in the 1T-CoTe2 layers. More significantly, we unveil the flat band states in the ultrathin Co9Te16 and identify the real-space localization of the flat band states by in situ scanning tunneling microscopy/spectroscopy (STM/STS) combined with first-principles calculations. A ferrimagnetic order is also predicted in kagome-Co9Te16. This work should provide a novel route for the direct synthesis of ultrathin kagome materials via a metal self-intercalation route, which should shed light on the exploration of the intriguing flat band physics in the related systems.
RESUMO
BACKGROUND: Age-related hearing loss (ARHL) - also termed presbycusis - is prevalent among older adults, leading to a range of issues. Although considerable progress in the understanding of ARHL over the decades, available reports lack data from recent years and do not comprehensively reflect the latest advancements and trends. Therefore, our study sought to assess research hotspots and trends in ARHL over the past 5 years to provide the basis for future research. MATERIALS AND METHODS: The Web of Science Core Collection database was searched and screened from January 1, 2019 to October 21, 2023, according to the inclusion criteria. CiteSpace (5.8.R3), VOSviewer (1.6.19), and Microsoft Excel 2019 were employed for bibliometric analysis and visualization. RESULTS: 3084 articles from 92 countries led by the United States and China were included. There has been a steady upward trend in the number of publications from 2019 to 2023. The most productive institutions, authors, and journals are Johns Hopkins University (n = 113), Lin FR (n = 66), and Ear and Hearing (n = 135), respectively. Trend topic analyses revealed that "cochlear synaptopathy" and "dementia" were the predominant foci. Keywords, including "individuals" and "national health", began to appear. CONCLUSION: Over the past 5 years, the annual number of publications has increased significantly and will continue to do so. Research on the mechanism of ARHL, represented by "oxidative stress", is a continuing focus. Emerging topics such as "individual differences" and "national health" may be potential future hotspots in this field.
Assuntos
Bibliometria , Presbiacusia , Humanos , Presbiacusia/epidemiologia , Pesquisa Biomédica/tendências , IdosoRESUMO
Ultrathin PtSe2 ribbons can host spin-polarized edge states and distinct edge electrocatalytic activity, emerging as a promising candidate for versatile applications in various fields. However, the direct synthesis is still challenging and the growth mechanism is still unclear. Herein, the arrayed growth of ultrathin PtSe2 ribbons on bunched vicinal Au(001) facets, via a facile chemical vapor deposition (CVD) route is reported. The ultrathin PtSe2 flakes can transform from traditional irregular shapes to desired ribbon shapes by increasing the height of bunched and unidirectionally oriented Au steps (with step height hstep) is found. This crossover, occurring at hstep ≈ 3.0 nm, defines the tailored growth from step-flow to single-terrace-confined modes, as validated by density functional theory calculations of the different system energies. On the millimeter-scale single-crystal Au(001) films with aligned steps, the arrayed ultrathin PtSe2 ribbons with tunable width of ≈20-1000 nm, which are then served as prototype electrocatalysts for hydrogen evolution reaction (HER) is achieved. This work should represent a huge leap in the direct synthesis and the mechanism exploration of arrayed ultrathin transition-metal dichalcogenides (TMDCs) ribbons, which should stimulate further explorations of the edge-related physical properties and practical applications.
RESUMO
BACKGROUND: Osteosarcoma is originated from skeletal system. Recombinant human proteoglycan 4 (rhPRG4) can inhibit cell proliferation and migration in multiple cancers. This research is designed to dig out the role and mechanism of PRG4 in osteosarcoma. METHODS: Human osteosarcoma cell lines, MG63 and 143B, were transfected with programmed death 1 (PD-L1) overexpression vectors and/or treated with 20, 50, and 100⯵g/mL rhPRG4, followed by the determination of cell viability, colony formation, sphere formation, invasion, migration, apoptosis, and the expressions of matrix metalloproteinases (MMPs), PD-L1 and apoptosis-related proteins. Tumor-bearing mouse models were constructed by injection of 143B cells and treatment of anti-PD-L1 antibody and/or adenovirus PRG4 (AdPRG4). Tumor volume was monitored, and immunohistochemical location of Ki67 was performed. Expressions of MMPs, transforming growth factor-ß (TGF-ß), PD-L1, and epithelial mesenchymal transition (EMT)-related proteins were measured in tumors. RESULTS: RhPRG4 (20, 50, and 100⯵g/mL) inhibited the viability, colony formation, sphere formation, invasion, migration, and the expressions of MMP2, MMP9 and Bcl2 in osteosarcoma cells, while promoting cell apoptosis as well as Bax and c-caspase3 expressions, at a dose-dependent manner; by contrast, PD-L1 overexpression reversed the above effects of 100⯵g/mL rhPRG4. AdPRG4 or anti-PD-L1 antibody decreased tumor volume, number of pulmonary metastasis nodule, Ki67 location, and expressions of TGF-ß, PD-L1, MMP2, MMP9, Vimentin, and Snail, but increased E-cadherin expression in tumor cells. Moreover, anti-PD-L1 antibody and AdPRG4 together functioned more effectively than them alone in reducing tumor burden. CONCLUSION: PRG4 represses the genesis and metastasis of osteosarcoma via inhibiting PD-L1 expression, and AdPRG4 enhances the effectiveness of anti-PD-L1 therapy.
Assuntos
Antígeno B7-H1 , Osteossarcoma , Proteoglicanas , Animais , Humanos , Camundongos , Apoptose/efeitos dos fármacos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Neoplasias Ósseas/patologia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos Nus , Metástase Neoplásica , Osteossarcoma/patologia , Osteossarcoma/metabolismo , Osteossarcoma/genética , Proteoglicanas/metabolismoRESUMO
Defect-engineered bimetallic oxides exhibit high potential for the electrolysis of small organic molecules. However, the ambiguity in the relationship between the defect density and electrocatalytic performance makes it challenging to control the final products of multi-step multi-electron reactions in such electrocatalytic systems. In this study, controllable kinetics reduction is used to maximize the oxygen vacancy density of a CuâCo oxide nanosheet (CuCo2O4 NS), which is used to catalyze the glycerol electrooxidation reaction (GOR). The CuCo2O4-x NS with the highest oxygen-vacancy density (CuCo2O4-x-2) oxidizes C3 molecules to C1 molecules with selectivity of almost 100% and a Faradaic efficiency of ≈99%, showing the best oxidation performance among all the modified catalysts. Systems with multiple oxygen vacancies in close proximity to each other synergistically facilitate the cleavage of CâC bonds. Density functional theory calculations confirm the ability of closely spaced oxygen vacancies to facilitate charge transfer between the catalyst and several key glycolic-acid (GCA) intermediates of the GOR process, thereby facilitating the decomposition of C2 intermediates to C1 molecules. This study reveals qualitatively in tuning the density of oxygen vacancies for altering the reaction pathway of GOR by the synergistic effects of spatial proximity of high-density oxygen vacancies.
RESUMO
Optimizing the local electronic structure of electrocatalysts can effectively lower the energy barrier of electrochemical reactions, thus enhancing the electrocatalytic activity. However, the intrinsic contribution of the electronic effect is still experimentally unclear. In this work, the electron injection-incomplete discharge approach to achieve the electron accumulation (EA) degree on the nickel-iron layered double hydroxide (NiFe LDH) is proposed, to reveal the intrinsic contribution of EA toward oxygen evolution reaction (OER). Such NiFe LDH with EA effect results in only 262 mV overpotential to reach 50 mA cm-2, which is 51 mV-lower compared with pristine NiFe LDH (313 mV), and reduced Tafel slope of 54.8 mV dec-1 than NiFe LDH (107.5 mV dec-1). Spectroscopy characterizations combined with theoretical calculations confirm that the EA near concomitant Vo can induce a narrower energy gap and lower thermodynamic barrier to enhance OER performance. This study clarifies the mechanism of the EA effect on OER activity, providing a direct electronic structure modulation guideline for effective electrocatalyst design.
RESUMO
BACKGROUND: Colorectal cancer (CRC) ranks among the most prevalent malignant tumors globally. Recent reports suggest that Fusobacterium nucleatum (F. nucleatum) contributes to the initiation, progression, and prognosis of CRC. Butyrate, a short-chain fatty acid derived from the bacterial fermentation of soluble dietary fiber, is known to inhibit various cancers. This study is designed to explore whether F. nucleatum influences the onset and progression of CRC by impacting the intestinal metabolite butyric acid. AIM: To investigate the mechanism by which F. nucleatum affects CRC occurrence and development. METHODS: Alterations in the gut microbiota of BALB/c mice were observed following the oral administration of F. nucleatum. Additionally, DLD-1 and HCT116 cell lines were exposed to sodium butyrate (NaB) and F. nucleatum in vitro to examine the effects on proliferative proteins and mitochondrial function. RESULTS: Our research indicates that the prevalence of F. nucleatum in fecal samples from CRC patients is significantly greater than in healthy counterparts, while the prevalence of butyrate-producing bacteria is notably lower. In mice colonized with F. nucleatum, the population of butyrate-producing bacteria decreased, resulting in altered levels of butyric acid, a key intestinal metabolite of butyrate. Exposure to NaB can impair mitochondrial morphology and diminish mitochondrial membrane potential in DLD-1 and HCT116 CRC cells. Consequently, this leads to modulated production of adenosine triphosphate and reactive oxygen species, thereby inhibiting cancer cell proliferation. Additionally, NaB triggers the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway, blocks the cell cycle in HCT116 and DLD-1 cells, and curtails the proliferation of CRC cells. The combined presence of F. nucleatum and NaB attenuated the effects of the latter. By employing small interfering RNA to suppress AMPK, it was demonstrated that AMPK is essential for NaB's inhibition of CRC cell proliferation. CONCLUSION: F. nucleatum can promote cancer progression through its inhibitory effect on butyric acid, via the AMPK signaling pathway.
Assuntos
Ácido Butírico , Proliferação de Células , Neoplasias Colorretais , Fezes , Fusobacterium nucleatum , Microbioma Gastrointestinal , Camundongos Endogâmicos BALB C , Animais , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Ácido Butírico/farmacologia , Ácido Butírico/metabolismo , Humanos , Camundongos , Fezes/microbiologia , Proliferação de Células/efeitos dos fármacos , Células HCT116 , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Infecções por Fusobacterium/microbiologia , Modelos Animais de Doenças , Linhagem Celular Tumoral , Feminino , Progressão da Doença , Disbiose , Potencial da Membrana Mitocondrial/efeitos dos fármacosRESUMO
STUDY DESIGN: A retrospective clinical study with confirmatory evaluation in healthy volunteers. OBJECTIVE: To investigate the association between deep vein thrombosis (DVT) and surgical position after cervical spine surgery. SUMMARY OF BACKGROUND DATA: It is unclear whether posterior cervical surgery using the prone position increases the risk of postoperative DVT relative to anterior cervical surgery. MATERIALS AND METHODS: A total of 340 patients undergoing surgery for degenerative cervical myelopathy were included. Multivariate analysis was used to identify the predictors of postoperative DVT, adjusting for potential confounders. In addition, 45 healthy volunteers were used to study the blood flow velocity and intravascular diameter of the posterior tibial vein (PTV) and popliteal vein (PV) of the subjects, which were monitored by ultrasound and compared among three positions (supine, prone, and prone with iliac cushions). RESULTS: Multivariate analysis showed that advanced age (above 63.5 yr old), preoperative varicose veins, D-dimer >0.255 mg/L, bleeding volume >303 mL, and prone positioning were significantly associated with DVT after cervical spine surgery. The results of vascular ultrasound showed that the blood flow velocities of the PV and PTV in the prone position with cushions were significantly lower than those in the supine position. The diameter of PV in the prone position with cushions was also significantly larger. The blood flow velocity and diameter of PV in the prone position with cushions were significantly lower and larger, respectively, than those in the prone position without cushions. CONCLUSIONS: Posterior cervical surgery in the prone position was significantly associated with postoperative DVT. The prone position with iliac cushions may decrease venous flow within the lower extremities due to compression of the iliac veins, obstructing venous return and thus increasing the incidence of postoperative DVT. The prone position without iliac cushions may reduce the potential for DVT. LEVEL OF EVIDENCE: 3.
Assuntos
Vértebras Cervicais , Complicações Pós-Operatórias , Trombose Venosa , Humanos , Masculino , Feminino , Trombose Venosa/etiologia , Trombose Venosa/diagnóstico por imagem , Trombose Venosa/epidemiologia , Pessoa de Meia-Idade , Decúbito Ventral , Estudos Retrospectivos , Vértebras Cervicais/cirurgia , Vértebras Cervicais/diagnóstico por imagem , Idoso , Complicações Pós-Operatórias/etiologia , Adulto , Extremidade Inferior/irrigação sanguínea , Fatores de Risco , Velocidade do Fluxo Sanguíneo/fisiologia , Posicionamento do Paciente/efeitos adversosRESUMO
Given its exceptional theoretical energy density (over 2000 Wh kg-1), lithium||carbon fluoride (Li||CFx) battery has garnered global attention. N-methylpyrrolidone (NMP)-based electrolyte is regarded as one promising candidate for tremendously enhancing the energy density of Li||CFx battery, provided self-discharge challenges can be resolved. This study successfully achieves a low self-discharge (LSD) and desirable electrochemical performance in Li||CFx batteries at high temperatures by utilizing NMP as the solvent and incorporating additional ingredients, including vinylene carbonate additive, as well as the dual-salt systems formed by LiBF4 with three different Li salts, namely lithium bis(oxalato)borate, lithium difluoro(oxalato)borate, and LiNO3. The experimental results unfold that the proposed methods not only minimize aluminum current collector corrosion, but also effectively passivate the Li metal anode. Among them, LiNO3 exhibits the most pronounced effect that achieves an energy density of ≈2400 Wh kg-1 at a current density of 10 mA g-1 at 30 °C, nearly 0% capacity-fade rate after 300 h of storage at 60 °C, and the capability to maintain a stable open-circuit voltage over 4000 h. This work provides a distinctive perspective on how to realize both high energy density and LSD rates at high temperature of Li||CFx battery.
RESUMO
On 16 June 2023, the United Nations Environment Programme highlighted the severity of nitrogen pollution faced by humans and called for joint action for sustainable nitrogen use. Excess nitrogenous waste (NW: NO, NO2, NO2-, NO3-, etc.) mainly arises from the use of synthetic fertilisers, wastewater discharge, and fossil fuel combustion. Although the amount of NW produced can be minimised by reducing the use of nitrogen fertilisers and fossil fuels, the necessity to feed seven billion people on Earth limits the utility of this approach. Compared to current industrial processes, electrocatalytic NW reduction or CO2-NW co-reduction offers a potentially greener alternative for recycling NW and producing high-value chemicals. However, upgrading this technology to connect upstream and downstream industrial chains is challenging. This viewpoint focuses on electrocatalytic NW reduction, a cutting-edge technology, and highlights the challenges in its practical application. It also discusses future directions to meet the requirements of upstream and downstream industries by optimising production processes, including the pretreatment and supply of nitrogenous raw materials (e.g. flue gas and sewage), design and macroscopic preparation of electrocatalysts, and upscaling of reactors and other auxiliary equipment.
RESUMO
Distributed artificial intelligence is increasingly being applied to multiple unmanned aerial vehicles (multi-UAVs). This poses challenges to the distributed reconfiguration (DR) required for the optimal redeployment of multi-UAVs in the event of vehicle destruction. This paper presents a multi-agent deep reinforcement learning-based DR strategy (DRS) that optimizes the multi-UAV group redeployment in terms of swarm performance. To generate a two-layer DRS between multiple groups and a single group, a multi-agent deep reinforcement learning framework is developed in which a QMIX network determines the swarm redeployment, and each deep Q-network determines the single-group redeployment. The proposed method is simulated using Python and a case study demonstrates its effectiveness as a high-quality DRS for large-scale scenarios.
RESUMO
Plant architecture and organ size are considered as important traits in crop breeding and germplasm improvement. Although several factors affecting plant architecture and organ size have been identified in rice, the genetic and regulatory mechanisms remain to be elucidated. Here, we identified and characterized the small plant and organ 1 (spo1) mutant in rice (Oryza sativa), which exhibits narrow and rolled leaf, reductions in plant height, root length, and grain width, and other morphological defects. Map-based cloning revealed that SPO1 is allelic with OsCSLD4, a gene encoding the cellulose synthase-like protein D4, and is highly expressed in the roots at the seedling and tillering stages. Microscopic observation revealed the spo1 mutant had reduced number and width in leaf veins, smaller size of leaf bulliform cells, reduced cell length and cell area in the culm, and decreased width of epidermal cells in the outer glume of the grain. These results indicate the role of SPO1 in modulating cell division and cell expansion, which modulates plant architecture and organ size. It is showed that the contents of endogenous hormones including auxin, abscisic acid, gibberellin, and zeatin tested in the spo1 mutant were significantly altered, compared to the wild type. Furthermore, the transcriptome analysis revealed that the differentially expressed genes (DEGs) are significantly enriched in the pathways associated with plant hormone signal transduction, cell cycle progression, and cell wall formation. These results indicated that the loss of SPO1/OsCSLD4 function disrupted cell wall cellulose synthase and hormones homeostasis and signaling, thus leading to smaller plant and organ size in spo1. Taken together, we suggest the functional role of SPO1/OsCSLD4 in the control of rice plant and organ size by modulating cell division and expansion, likely through the effects of multiple hormonal pathways on cell wall formation.
Assuntos
Oryza , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tamanho do Órgão , Melhoramento Vegetal , Hormônios/metabolismo , Folhas de Planta/genética , Regulação da Expressão Gênica de PlantasRESUMO
Active sites identification in metal-free carbon materials is crucial for developing practical electrocatalysts, but resolving precise configuration of active site remains a challenge because of the elusive dynamic structural evolution process during reactions. Here, we reveal the dynamic active site identification process of oxygen modified defective graphene. First, the defect density and types of oxygen groups were precisely manipulated on graphene, combined with electrocatalytic performance evaluation, revealing a previously overlooked positive correlation relationship between the defect density and the 2 e- oxygen reduction performance. An electrocatalytic-driven oxygen groups redistribution phenomenon was observed, which narrows the scope of potential configurations of the active site. The dynamic evolution processes are monitored via multiple in-situ technologies and theoretical spectra simulations, resolving the configuration of major active sites (carbonyl on pentagon defect) and key intermediates (*OOH), in-depth understanding the catalytic mechanism and providing a research paradigm for metal-free carbon materials.
RESUMO
Lead selenide (PbSe) has been attracted a lot attention in fundamental research and industrial applications due to its excellent infrared optical and thermoelectric properties, toward reaching the two-dimensional limit. Herein, we realize the black phosphorus-like PbSe (α-phase PbSe) monolayer on Au(111) via epitaxial growth, where a characteristic rectangular superlattice of 5 Å × 9 Å corresponding to 1 × 2 reconstruction with respect to the pristine ofα-phase PbSe is observed by scanning tunneling microscopy. Corresponding density functional theory calculation confirmed the reconstruction and revealed the driven mechanism, the coupling between monolayer PbSe and Au(111) substrate. The metallic feature of differential conductance spectra as well as the transition of the density of states from semiconductor to metal further verified such coupling. As the unique anisotropic structure, our study provides a pathway towards the synthesis of BP-PbSe monolayer. In addition, it builds up an ideal platform for studying fundamental physics and also excellent prospects in PbSe-based device applications.
RESUMO
BACKGROUND: Otorhinolaryngology diseases are well suited for artificial intelligence (AI)-based interpretation. The use of AI, particularly AI based on deep learning (DL), in the treatment of human diseases is becoming more and more popular. However, there are few bibliometric analyses that have systematically studied this field. OBJECTIVE: The objective of this study was to visualize the research hot spots and trends of AI and DL in ENT diseases through bibliometric analysis to help researchers understand the future development of basic and clinical research. METHODS: In all, 232 articles and reviews were retrieved from The Web of Science Core Collection. Using CiteSpace and VOSviewer software, countries, institutions, authors, references, and keywords in the field were visualized and examined. RESULTS: The majority of these papers came from 44 nations and 498 institutions, with China and the United States leading the way. Common diseases used by AI in ENT include otosclerosis, otitis media, nasal polyps, sinusitis, and so on. In the early years, research focused on the analysis of hearing and articulation disorders, and in recent years mainly on the diagnosis, localization, and grading of diseases. CONCLUSIONS: The analysis shows the periodical hot spots and development direction of AI and DL application in ENT diseases from the time dimension. The diagnosis and prognosis of otolaryngology diseases and the analysis of otolaryngology endoscopic images have been the focus of current research and the development trend of future.