Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
bioRxiv ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38746377

RESUMO

Background and Objective: Prostate cancer (PCa) is a leading cause of cancer mortality in men, with neuroendocrine prostate cancer (NEPC) representing a particularly resistant subtype. The role of transcription factors (TFs) in the progression from prostatic adenocarcinoma (PRAD) to NEPC is poorly understood. This study aims to identify and analyze lineage-specific TF profiles in PRAD and NEPC and illustrate their dynamic shifts during NE transdifferentiation. Methods: A novel algorithmic approach was developed to evaluate the weighted expression of TFs within patient samples, enabling a nuanced understanding of TF landscapes in PCa progression and TF dynamic shifts during NE transdifferentiation. Results: unveiled TF profiles for PRAD and NEPC, identifying 126 shared TFs, 46 adenocarcinoma-TFs, and 56 NEPC-TFs. Enrichment analysis across multiple clinical cohorts confirmed the lineage specificity and clinical relevance of these lineage-TFs signatures. Functional analysis revealed that lineage-TFs are implicated in pathways critical to cell development, differentiation, and lineage determination. Novel lineage-TF candidates were identified, offering potential targets for therapeutic intervention. Furthermore, our longitudinal study on NE transdifferentiation highlighted dynamic TF expression shifts and delineated a three-phase hypothesis for the process comprised of de-differentiation, dormancy, and re-differentiation. and proposing novel insights into the mechanisms of PCa progression. Conclusion: The lineage-specific TF profiles in PRAD and NEPC reveal a dynamic shift in the TF landscape during PCa progression, highlighting three distinct phases of NE transdifferentiation.

2.
Surg Endosc ; 38(4): 2134-2141, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38443500

RESUMO

INTRODUCTION: A history of lung transplantation is a risk factor for poor outcomes in patients undergoing laparoscopic fundoplication. We wanted to determine whether enhanced recovery after a robotic-assisted surgery program would mitigate these risks. METHODS: We performed a single-center retrospective analysis of the Society of Thoracic Surgery database for patients who underwent elective antireflux procedures from 1/2018 to 2/2021 under the enhanced recovery after surgery program using robotic assistance. We identified the patient and surgical characteristics, morbidity, length of stay, and 30-day readmission rates. RESULTS: Among 386 patients who underwent barrier creation, 41 had previously undergone a lung transplant, either bilateral (n = 28) or single (n = 13). There were no significant differences in postoperative complications (9.8% vs. 5.2%, p = 0.27), median hospital length of stay (1 d vs. 1 d, p = 0.28), or 30-day readmission (7.3% vs. 4.9%, p = 0.46). Bivariate analysis showed that older age (p = 0.03), history of DVT/PE (p < 0.001), history of cerebrovascular events (p = 0.03), opioid dependence (p = 0.02), neurocognitive dysfunction (p < 0.001), and dependent functional status (p = 0.02) were associated with postoperative complications. However, lung transplantation was not associated with an increased risk of postoperative complications (p = 0.28). DISCUSSION: The risk of surgical complications in patients with a history of lung transplantation may be mitigated by the combination of ERAS and minimally invasive surgery such as robot-assisted surgery.


Assuntos
Recuperação Pós-Cirúrgica Melhorada , Laparoscopia , Transplante de Pulmão , Procedimentos Cirúrgicos Robóticos , Humanos , Fundoplicatura/métodos , Procedimentos Cirúrgicos Robóticos/efeitos adversos , Procedimentos Cirúrgicos Robóticos/métodos , Estudos Retrospectivos , Transplante de Pulmão/efeitos adversos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/prevenção & controle , Laparoscopia/efeitos adversos , Laparoscopia/métodos , Tempo de Internação
3.
Gynecol Oncol ; 176: 162-172, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37556934

RESUMO

OBJECTIVE: Dedifferentiated endometrial cancer (DDEC) is an uncommon and clinically highly aggressive subtype of endometrial cancer characterized by genomic inactivation of SWItch/Sucrose Non-Fermentable (SWI/SNF) complex protein. It responds poorly to conventional systemic treatment and its rapidly progressive clinical course limits the therapeutic windows to trial additional lines of therapies. This underscores a pressing need for biologically accurate preclinical tumor models to accelerate therapeutic development. METHODS: DDEC tumor from surgical samples were implanted into immunocompromised mice for patient-derived xenograft (PDX) and cell line development. The histologic, immunophenotypic, genetic and epigenetic features of the patient tumors and the established PDX models were characterized. The SMARCA4-deficienct DDEC model was evaluated for its sensitivity toward a KDM6A/B inhibitor (GSK-J4) that was previously reported to be effective therapy for other SMARCA4-deficient cancer types. RESULTS: All three DDEC models exhibited rapid growth in vitro and in vivo, with two PDX models showing spontaneous development of metastases in vivo. The PDX tumors maintained the same undifferentiated histology and immunophenotype, and exhibited identical genomic and methylation profiles as seen in the respective parental tumors, including a mismatch repair (MMR)-deficient DDEC with genomic inactivation of SMARCA4, and two MMR-deficient DDECs with genomic inactivation of both ARID1A and ARID1B. Although the SMARCA4-deficient cell line showed low micromolecular sensitivity to GSK-J4, no significant tumor growth inhibition was observed in the corresponding PDX model. CONCLUSIONS: These established patient tumor-derived models accurately depict DDEC and represent valuable preclinical tools to gain therapeutic insights into this aggressive tumor type.


Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais , Neoplasias do Endométrio , Feminino , Humanos , Animais , Camundongos , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Diferenciação Celular , Biomarcadores Tumorais/genética , DNA Helicases , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/genética
4.
Am J Hum Biol ; : e23972, 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37632331

RESUMO

INTRODUCTION: Social interactions shape the infant microbiome by providing opportunities for caregivers to spread bacteria through physical contact. With most research focused on the impact of maternal-infant contact on the infant gut microbiome, it is unclear how alloparents (i.e., caregivers other than the parents) influence the bacterial communities of infant body sites that are frequently contacted during bouts of caregiving, including the skin. METHODS: To begin to understand how allocare may influence the diversity of the infant microbiome, detailed questionnaire data on infant-alloparent relationships and specific allocare behaviors were coupled with skin and fecal microbiome samples (four body sites) from 48 infants living in Chicago, United States. RESULTS: Data from 16S rRNA gene amplicon sequencing indicated that infant skin and fecal bacterial diversity showed strong associations (positive and negative) to having female adult alloparents. Alloparental feeding and co-sleeping displayed stronger associations to infant bacterial diversity compared to playing or holding. The associations with allocare behaviors differed in magnitude and direction across infant body sites. Bacterial relative abundances varied by infant-alloparent relationship and breastfeeding status. CONCLUSION: This study provides some of the first evidence of an association between allocare and infant skin and fecal bacterial diversity. The results suggest that infants' exposure to bacteria from the social environment may vary based on infant-alloparent relationships and allocare behaviors. Since the microbiome influences immune system development, variation in allocare that impacts the diversity of infant bacterial communities may be an underexplored dimension of the social determinants of health in early life.

5.
J Med Internet Res ; 25: e48115, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37632414

RESUMO

BACKGROUND: Biomedical relation extraction (RE) is of great importance for researchers to conduct systematic biomedical studies. It not only helps knowledge mining, such as knowledge graphs and novel knowledge discovery, but also promotes translational applications, such as clinical diagnosis, decision-making, and precision medicine. However, the relations between biomedical entities are complex and diverse, and comprehensive biomedical RE is not yet well established. OBJECTIVE: We aimed to investigate and improve large-scale RE with diverse relation types and conduct usability studies with application scenarios to optimize biomedical text mining. METHODS: Data sets containing 125 relation types with different entity semantic levels were constructed to evaluate the impact of entity semantic information on RE, and performance analysis was conducted on different model architectures and domain models. This study also proposed a continued pretraining strategy and integrated models with scripts into a tool. Furthermore, this study applied RE to the COVID-19 corpus with article topics and application scenarios of clinical interest to assess and demonstrate its biological interpretability and usability. RESULTS: The performance analysis revealed that RE achieves the best performance when the detailed semantic type is provided. For a single model, PubMedBERT with continued pretraining performed the best, with an F1-score of 0.8998. Usability studies on COVID-19 demonstrated the interpretability and usability of RE, and a relation graph database was constructed, which was used to reveal existing and novel drug paths with edge explanations. The models (including pretrained and fine-tuned models), integrated tool (Docker), and generated data (including the COVID-19 relation graph database and drug paths) have been made publicly available to the biomedical text mining community and clinical researchers. CONCLUSIONS: This study provided a comprehensive analysis of RE with diverse relation types. Optimized RE models and tools for diverse relation types were developed, which can be widely used in biomedical text mining. Our usability studies provided a proof-of-concept demonstration of how large-scale RE can be leveraged to facilitate novel research.


Assuntos
COVID-19 , Humanos , Mineração de Dados , Bases de Dados Factuais , Conhecimento , Medicina de Precisão
6.
Cancer Gene Ther ; 30(10): 1382-1389, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37452083

RESUMO

Androgen deprivation therapy (ADT) is the standard care for advanced prostate cancer (PCa) patients. Unfortunately, although tumors respond well initially, they enter dormancy and eventually progress to fatal/incurable castration-resistant prostate cancer (CRPC). B7-H3 is a promising new target for PCa immunotherapy. CD276 (B7-H3) gene has a presumptive androgen receptor (AR) binding site, suggesting potential AR regulation. However, the relationship between B7-H3 and AR is controversial. Meanwhile, the expression pattern of B7-H3 following ADT and during CRPC progression is largely unknown, but critically important for identifying patients and determining the optimal timing of B7-H3 targeting immunotherapy. In this study, we performed a longitudinal study using our unique PCa patient-derived xenograft (PDX) models and assessed B7-H3 expression during post-ADT disease progression. We further validated our findings at the clinical level in PCa patient samples. We found that B7-H3 expression was negatively regulated by AR during the early phase of ADT treatment, but positively associated with PCa proliferation during the remainder of disease progression. Our findings suggest its use as a biomarker for diagnosis, prognosis, and ADT treatment response, and the potential of combining ADT and B7-H3 targeting immunotherapy for hormone-naïve PCa treatment to prevent fatal CRPC relapse.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Antagonistas de Androgênios/uso terapêutico , Estudos Longitudinais , Progressão da Doença , Recidiva Local de Neoplasia , Receptores Androgênicos/genética , Fatores de Transcrição , Hormônios/uso terapêutico , Antígenos B7/genética
7.
Alzheimers Dement ; 19(5): 1888-1900, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335579

RESUMO

INTRODUCTION: Sleep disruption is associated with astrocyte activation and impaired cognition in model organisms. However, the relationship among sleep, astrocyte activation, and cognition in humans is uncertain. METHODS: We used RNA-seq to quantify the prefrontal cortex expression of a panel of human activated astrocyte marker genes in 1076 older adults in the Religious Orders Study and Rush Memory and Aging Project, 411 of whom had multi-day actigraphy prior to death. We related this to rest fragmentation, a proxy for sleep fragmentation, and to longitudinal cognitive function. RESULTS: Fragmentation of rest periods was associated with higher expression of activated astrocyte marker genes, which was associated with a lower level and faster decline of cognitive function. DISCUSSION: Astrocyte activation and fragmented rest are associated with each other and with accelerated cognitive decline. If experimental studies confirm a causal relationship, targeting sleep fragmentation and astrocyte activation may benefit cognition in older adults. HIGHLIGHTS: Greater fragmentation of rest periods, a proxy for sleep fragmentation, is associated with higher composite expression of a panel of genes characteristic of activated astrocytes. Increased expression of genes characteristic of activated astrocytes was associated with a lower level and more rapid decline of cognitive function, beyond that accounted for by the burden of amyloid and neurofibrillary tangle pathology. Longitudinal and experimental studies are needed to delineate the causal relationships among sleep, astrocyte activation, and cognition.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Idoso , Doença de Alzheimer/patologia , Privação do Sono , Astrócitos/patologia , Sono/fisiologia , Disfunção Cognitiva/genética , Cognição/fisiologia
8.
J Surg Res ; 281: 45-51, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36115148

RESUMO

INTRODUCTION: Continuous prediction surveillance modeling is an emerging tool giving dynamic insight into conditions with potential mitigation of adverse events (AEs) and failure to rescue. The Epic electronic medical record contains a Deterioration Index (DI) algorithm that generates a prediction score every 15 min using objective data. Previous validation studies show rapid increases in DI score (≥14) predict a worse prognosis. The aim of this study was to demonstrate the utility of DI scores in the trauma intensive care unit (ICU) population. METHODS: A prospective, single-center study of trauma ICU patients in a Level 1 trauma center was conducted during a 3-mo period. Charts were reviewed every 24 h for minimum and maximum DI score, largest score change (Δ), and AE. Patients were grouped as low risk (ΔDI <14) or high risk (ΔDI ≥14). RESULTS: A total of 224 patients were evaluated. High-risk patients were more likely to experience AEs (69.0% versus 47.6%, P = 0.002). No patients with DI scores <30 were readmitted to the ICU after being stepped down to the floor. Patients that were readmitted and subsequently died all had DI scores of ≥60 when first stepped down from the ICU. CONCLUSIONS: This study demonstrates DI scores predict decompensation risk in the surgical ICU population, which may otherwise go unnoticed in real time. This can identify patients at risk of AE when transferred to the floor. Using the DI model could alert providers to increase surveillance in high-risk patients to mitigate unplanned returns to the ICU and failure to rescue.


Assuntos
Registros Eletrônicos de Saúde , Unidades de Terapia Intensiva , Humanos , Estudos Prospectivos , Estudos de Viabilidade , Estudos Retrospectivos , Mortalidade Hospitalar
9.
Cells ; 11(9)2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35563856

RESUMO

Androgen deprivation therapy (ADT) is the standard therapy for men with advanced prostate cancer (PCa). PCa often responds to ADT and enters a dormancy period, which can be recognized clinically as a minimal residual disease. However, the majority of these patients will eventually experience a relapse in the form of castration-resistant PCa with poor survival. Therefore, ADT-induced dormancy is a unique time window for treatment that can provide a cure. The study of this well-recognized phase of prostate cancer progression is largely hindered by the scarcity of appropriate clinical tissue and clinically relevant preclinical models. Here, we report the utility of unique and clinically relevant patient-derived xenograft models in the study of the intrinsic immune landscape of dormant PCa. Using data from RNA sequencing, we have reconstructed the immune evasion mechanisms that can be utilized by dormant PCa cells. Since dormant PCa cells need to evade the host immune surveillance for survival, our results provide a framework for further study and for devising immunomodulatory mechanisms that can eliminate dormant PCa cells.


Assuntos
Antagonistas de Androgênios , Neoplasias de Próstata Resistentes à Castração , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Humanos , Masculino , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Análise de Sequência de RNA/métodos
10.
Mol Cancer Res ; 20(5): 782-793, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35082166

RESUMO

Treatment-induced tumor dormancy is a state in cancer progression where residual disease is present but remains asymptomatic. Dormant cancer cells are treatment-resistant and responsible for cancer recurrence and metastasis. Prostate cancer treated with androgen-deprivation therapy (ADT) often enters a dormant state. ADT-induced prostate cancer dormancy remains poorly understood due to the challenge in acquiring clinical dormant prostate cancer cells and the lack of representative models. In this study, we aimed to develop clinically relevant models for studying ADT-induced prostate cancer dormancy. Dormant prostate cancer models were established by castrating mice bearing patient-derived xenografts (PDX) of hormonal naïve or sensitive prostate cancer. Dormancy status and tumor relapse were monitored and evaluated. Paired pre- and postcastration (dormant) PDX tissues were subjected to morphologic and transcriptome profiling analyses. As a result, we established eleven ADT-induced dormant prostate cancer models that closely mimicked the clinical courses of ADT-treated prostate cancer. We identified two ADT-induced dormancy subtypes that differed in morphology, gene expression, and relapse rates. We discovered transcriptomic differences in precastration PDXs that predisposed the dormancy response to ADT. We further developed a dormancy subtype-based, predisposed gene signature that was significantly associated with ADT response in hormonal naïve prostate cancer and clinical outcome in castration-resistant prostate cancer treated with ADT or androgen-receptor pathway inhibitors. IMPLICATIONS: We have established highly clinically relevant PDXs of ADT-induced dormant prostate cancer and identified two dormancy subtypes, leading to the development of a novel predicative gene signature that allows robust risk stratification of patients with prostate cancer to ADT or androgen-receptor pathway inhibitors.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Antagonistas de Androgênios/farmacologia , Antagonistas de Receptores de Andrógenos , Androgênios/uso terapêutico , Animais , Humanos , Masculino , Camundongos , Recidiva Local de Neoplasia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia
11.
Mol Oncol ; 15(7): 1921-1941, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33793068

RESUMO

Metastatic neuroendocrine prostate cancer (NEPC) is a highly aggressive disease, whose incidence is rising. Long noncoding RNAs (lncRNAs) represent a large family of disease- and tissue-specific transcripts, most of which are still functionally uncharacterized. Thus, we set out to identify the highly conserved lncRNAs that play a central role in NEPC pathogenesis. To this end, we performed transcriptomic analyses of donor-matched patient-derived xenograft models (PDXs) with immunohistologic features of prostate adenocarcinoma (AR+ /PSA+ ) or NEPC (AR- /SYN+ /CHGA+ ) and through differential expression analyses identified lncRNAs that were upregulated upon neuroendocrine transdifferentiation. These genes were prioritized for functional assessment based on the level of conservation in vertebrates. Here, LINC00261 emerged as the top gene with over 3229-fold upregulation in NEPC. Consistently, LINC00261 expression was significantly upregulated in NEPC specimens in multiple patient cohorts. Knockdown of LINC00261 in PC-3 cells dramatically attenuated its proliferative and metastatic abilities, which are explained by parallel downregulation of CBX2 and FOXA2 through distinct molecular mechanisms. In the cell cytoplasm, LINC00261 binds to and sequesters miR-8485 from targeting the CBX2 mRNA, while inside the nucleus, LINC00261 functions as a transcriptional scaffold to induce SMAD-driven expression of the FOXA2 gene. For the first time, these results demonstrate hyperactivation of the LINC00261-CBX2-FOXA2 axes in NEPC to drive proliferation and metastasis, and that LINC00261 may be utilized as a therapeutic target and a biomarker for this incurable disease.


Assuntos
Neoplasias da Próstata , RNA Longo não Codificante , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Citoplasma/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Próstata/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
12.
Prostate Cancer Prostatic Dis ; 24(3): 775-785, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33568749

RESUMO

BACKGROUND: Androgen deprivation therapy (ADT) remains the leading systemic therapy for locally advanced and metastatic prostate cancers (PCa). While a majority of PCa patients initially respond to ADT, the durability of response is variable and most patients will eventually develop incurable castration-resistant prostate cancer (CRPC). Our research objective is to identify potential early driver genes responsible for CRPC development. METHODS: We have developed a unique panel of hormone-naïve PCa (HNPC) patient-derived xenograft (PDX) models at the Living Tumor Laboratory. The PDXs provide a unique platform for driver gene discovery as they allow for the analysis of differentially expressed genes via transcriptomic profiling at various time points after mouse host castration. In the present study, we focused on genes with expression changes shortly after castration but before CRPC has fully developed. These are likely to be potential early drivers of CRPC development. Such genes were further validated for their clinical relevance using data from PCa patient databases. ZRSR2 was identified as a top gene candidate and selected for further functional studies. RESULTS: ZRSR2 is significantly upregulated in our PDX models during the early phases of CRPC development after mouse host castration and remains consistently high in fully developed CRPC PDX models. Moreover, high ZRSR2 expression is also observed in clinical CRPC samples. Importantly, elevated ZRSR2 in PCa samples is correlated with poor patient treatment outcomes. ZRSR2 knockdown reduced PCa cell proliferation and delayed cell cycle progression at least partially through inhibition of the Cyclin D1 (CCND1) pathway. CONCLUSION: Using our unique HNPC PDX models that develop into CRPC after host castration, we identified ZRSR2 as a potential early driver of CRPC development.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias de Próstata Resistentes à Castração/patologia , Ribonucleoproteínas/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Ciclo Celular , Movimento Celular , Proliferação de Células , Humanos , Masculino , Camundongos , Prognóstico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Ribonucleoproteínas/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Psychiatry Res ; 295: 113550, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33223273

RESUMO

Bipolar disorder (BD) is characterized with cognitive impairment, which may be mediated by corticostriatal dysfunction. Here we examined whether history of childhood trauma, a risk factor for BD, was linked to corticostriatal dysfunction in BD patients. Furthermore, the possible associations between childhood trauma and cognitive impairment were examined. Thirty-eight BD participants who met the DSM-IV diagnostic criteria were enrolled. Childhood trauma was identified via the Childhood Trauma Questionnaire (CTQ). Participants completed the Wisconsin Card-Sorting Test (WCST). Resting-state functional magnetic resonance imaging (rsfMRI) was performed in participants using a 3T scanner. Bilateral caudate to whole-brain functional connectivity (FC) were analyzed, and childhood trauma was entered as a regressor of interest when controlling for age. Results showed the level of physical neglect was negatively correlated with left-caudate-seed FC to the frontoparietal network, including the right supramarginal gyrus, left inferior parietal lobule, right middle frontal gyrus, and right superior parietal lobule. The level of physical neglect was also negatively correlated with WCST performance. And the left-caudate-seed FCs to the frontoparietal network were positively correlated with WCST performance. Unequivocally, the specific impacts of physical neglect on brain connectivity and executive function in the BD population merit further investigation.


Assuntos
Transtorno Bipolar/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Maus-Tratos Infantis/psicologia , Imageamento por Ressonância Magnética/métodos , Adulto , Criança , Manual Diagnóstico e Estatístico de Transtornos Mentais , Função Executiva , Feminino , Humanos , Masculino , Lobo Parietal , Inquéritos e Questionários
14.
Int J Cancer ; 148(2): 469-480, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33038264

RESUMO

Prostate cancer (PCa) progression is driven by androgen receptor (AR) signaling. Unfortunately, androgen-deprivation therapy and the use of even more potent AR pathway inhibitors (ARPIs) cannot bring about a cure. ARPI resistance (ie, castration-resistant PCa, CRPC) will inevitably develop. Previously, we demonstrated that GRB10 is an AR transcriptionally repressed gene that functionally contributes to CRPC development and ARPI resistance. GRB10 expression is elevated prior to CRPC development in our patient-derived xenograft models and is significantly upregulated in clinical CRPC samples. Here, we analyzed transcriptomic data from GRB10 knockdown in PCa cells and found that AR signaling is downregulated. While the mRNA expression of AR target genes decreased upon GRB10 knockdown, AR expression was not affected at the mRNA or protein level. We further found that phosphorylation of AR serine 81 (S81), which is critical for AR transcriptional activity, is decreased by GRB10 knockdown and increased by its overexpression. Luciferase assay using GRB10-knockdown cells also indicate reduced AR activity. Immunoprecipitation coupled with mass spectrometry revealed an interaction between GRB10 and the PP2A complex, which is a known phosphatase of AR. Further validations and analyses showed that GRB10 binds to the PP2Ac catalytic subunit with its PH domain. Mechanistically, GRB10 knockdown increased PP2Ac protein stability, which in turn decreased AR S81 phosphorylation and reduced AR activity. Our findings indicate a reciprocal feedback between GRB10 and AR signaling, implying the importance of GRB10 in PCa progression.


Assuntos
Proteína Adaptadora GRB10/metabolismo , Neoplasias da Próstata/metabolismo , Proteína Fosfatase 2/metabolismo , Receptores Androgênicos/metabolismo , Animais , Linhagem Celular Tumoral , Proteína Adaptadora GRB10/genética , Técnicas de Silenciamento de Genes , Células HEK293 , Xenoenxertos , Humanos , Masculino , Camundongos , Neoplasias da Próstata/genética , Proteína Fosfatase 2/antagonistas & inibidores , Transdução de Sinais
15.
Sci Transl Med ; 12(564)2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028709

RESUMO

Acute graft-versus-host disease (aGVHD) remains a major complication of allogeneic hematopoietic cell transplantation (HCT). CD146 and CCR5 are proteins that mark activated T helper 17 (Th17) cells. The Th17 cell phenotype is promoted by the interaction of the receptor ICOS on T cells with ICOS ligand (ICOSL) on dendritic cells (DCs). We performed multiparametric flow cytometry in a cohort of 156 HCT recipients and conducted experiments with aGVHD murine models to understand the role of ICOSL+ DCs. We observed an increased frequency of ICOSL+ plasmacytoid DCs, correlating with CD146+CCR5+ T cell frequencies, in the 64 HCT recipients with gastrointestinal aGVHD. In murine models, donor bone marrow cells from ICOSL-deficient mice compared to those from wild-type mice reduced aGVHD-related mortality. Reduced aGVHD resulted from lower intestinal infiltration of pDCs and pathogenic Th17 cells. We transplanted activated human ICOSL+ pDCs along with human peripheral blood mononuclear cells into immunocompromised mice and observed infiltration of intestinal CD146+CCR5+ T cells. We found that prophylactic administration of a dual human ICOS/CD28 antagonist (ALPN-101) prevented aGVHD in this model better than did the clinically approved belatacept (CTLA-4-Fc), which binds CD80 (B7-1) and CD86 (B7-2) and interferes with the CD28 T cell costimulatory pathway. When started at onset of aGVHD signs, ALPN-101 treatment alleviated symptoms of ongoing aGVHD and improved survival while preserving antitumoral cytotoxicity. Our data identified ICOSL+-pDCs as an aGVHD biomarker and suggest that coinhibition of the ICOSL/ICOS and B7/CD28 axes with one biologic drug may represent a therapeutic opportunity to prevent or treat aGVHD.


Assuntos
Antígenos CD28 , Doença Enxerto-Hospedeiro , Abatacepte , Animais , Células Dendríticas , Doença Enxerto-Hospedeiro/tratamento farmacológico , Proteína Coestimuladora de Linfócitos T Induzíveis , Leucócitos Mononucleares , Camundongos
16.
Cells ; 9(6)2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32512818

RESUMO

Neuroendocrine prostate cancer (NEPC) is a lethal subtype of prostate cancer. It develops mainly via NE transdifferentiation of prostate adenocarcinoma in response to androgen receptor (AR)-inhibition therapy. The study of NEPC development has been hampered by a lack of clinically relevant models. We previously established a unique and first-in-field patient-derived xenograft (PDX) model of adenocarcinoma (LTL331)-to-NEPC (LTL331R) transdifferentiation. In this study, we applied conditional reprogramming (CR) culture to establish a LTL331 PDX-derived cancer cell line named LTL331_CR_Cell. These cells retain the same genomic mutations as the LTL331 parental tumor. They can be continuously propagated in vitro and can be genetically manipulated. Androgen deprivation treatment on LTL331_CR_Cells had no effect on cell proliferation. Transcriptomic analyses comparing the LTL331_CR_Cell to its parental tumor revealed a profound downregulation of the androgen response pathway and an upregulation of stem and basal cell marker genes. The transcriptome of LTL331_CR_Cells partially resembles that of post-castrated LTL331 xenografts in mice. Notably, when grafted under the renal capsules of male NOD/SCID mice, LTL331_CR_Cells spontaneously gave rise to NEPC tumors. This is evidenced by the histological expression of the NE marker CD56 and the loss of adenocarcinoma markers such as PSA. Transcriptomic analyses of the newly developed NEPC tumors further demonstrate marked enrichment of NEPC signature genes and loss of AR signaling genes. This study provides a novel research tool derived from a unique PDX model. It allows for the investigation of mechanisms underlying NEPC development by enabling gene manipulations ex vivo and subsequent functional evaluations in vivo.


Assuntos
Carcinogênese/patologia , Reprogramação Celular , Tumores Neuroendócrinos/patologia , Neoplasias da Próstata/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Androgênios/farmacologia , Carcinogênese/efeitos dos fármacos , Linhagem Celular Tumoral , Reprogramação Celular/efeitos dos fármacos , Humanos , Masculino , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia
18.
Mol Oncol ; 13(5): 1121-1136, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30776192

RESUMO

Prostate cancer (PCa) is driven by the androgen receptor (AR)-signaling axis. Hormonal therapy often mitigates PCa progression, but a notable number of cases progress to castration-resistant PCa (CRPC). CRPC retains AR activity and is incurable. Long noncoding RNA (lncRNA) represent an uncharted region of the transcriptome. Several lncRNA have been recently described to mediate oncogenic functions, suggesting that these molecules can be potential therapeutic targets. Here, we identified CRPC-associated lncRNA by analyzing patient-derived xenografts (PDXs) and clinical data. Subsequently, we characterized one of the CRPC-promoting lncRNA, HORAS5, in vitro and in vivo. We demonstrated that HORAS5 is a stable, cytoplasmic lncRNA that promotes CRPC proliferation and survival by maintaining AR activity under androgen-depleted conditions. Most strikingly, knockdown of HORAS5 causes a significant reduction in the expression of AR itself and oncogenic AR targets such as KIAA0101. Elevated expression of HORAS5 is also associated with worse clinical outcomes in patients. Our results from HORAS5 inhibition in in vivo models further confirm that HORAS5 is a viable therapeutic target for CRPC. Thus, we posit that HORAS5 is a novel, targetable mediator of CRPC through its essential role in the maintenance of oncogenic AR activity. Overall, this study adds to our mechanistic understanding of how lncRNA function in cancer progression.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/biossíntese , Neoplasias de Próstata Resistentes à Castração/metabolismo , RNA Longo não Codificante/metabolismo , RNA Neoplásico/metabolismo , Receptores Androgênicos/biossíntese , Transcrição Gênica , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/genética , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , RNA Longo não Codificante/genética , RNA Neoplásico/genética , Receptores Androgênicos/genética
19.
Front Immunol ; 10: 3086, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038630

RESUMO

Immunoglobulin superfamily member (IgSF) proteins play a significant role in regulating immune responses with surface expression on all immune cell subsets, making the IgSF an attractive family of proteins for therapeutic targeting in human diseases. We have developed a directed evolution platform capable of engineering IgSF domains to increase affinities for cognate ligands and/or introduce binding to non-cognate ligands. Using this scientific platform, ICOSL domains have been derived with enhanced binding to ICOS and with additional high-affinity binding to the non-cognate receptor, CD28. Fc-fusion proteins containing these engineered ICOSL domains significantly attenuate T cell activation in vitro and in vivo and can inhibit development of inflammatory diseases in mouse models. We also present evidence that engineered ICOSL domains can be formatted to selectively provide costimulatory signals to augment T cell responses. Our scientific platform thus provides a system for developing therapeutic protein candidates with selective biological impact for treatments of a wide array of human disorders including cancer and autoimmune/inflammatory diseases.


Assuntos
Imunoglobulinas/química , Imunoglobulinas/genética , Família Multigênica , Animais , Antígenos CD28/genética , Antígenos CD28/imunologia , Evolução Molecular Direcionada , Feminino , Humanos , Imunoglobulinas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Domínios Proteicos , Linfócitos T/imunologia
20.
Eur Urol ; 73(6): 949-960, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29544736

RESUMO

BACKGROUND: Although androgen deprivation therapy is initially effective in controlling growth of hormone-naive prostate cancers (HNPCs) in patients, currently incurable castration-resistant prostate cancer (CRPC) inevitably develops. OBJECTIVE: To identify CRPC driver genes that may provide new targets to enhance CRPC therapy. DESIGN, SETTING, AND PARTICIPANTS: Patient-derived xenografts (PDXs) of HNPCs that develop CRPC following host castration were examined for changes in expression of genes at various time points after castration using transcriptome profiling analysis; particular attention was given to pre-CRPC changes in expression indicative of genes acting as potential CRPC drivers. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The functionality of a potential CRPC driver was validated via its knockdown in cultured prostate cancer cells; its clinical relevance was established using data from prostate cancer patient databases. RESULTS AND LIMITATIONS: Eighty genes were found to be significantly upregulated at the CRPC stage, while seven of them also showed elevated expression prior to CRPC development. Among the latter, growth factor receptor bound protein 10 (GRB10) was the most significantly and consistently upregulated gene. Moreover, elevated GRB10 expression in clinical prostate cancer samples correlated with more aggressive tumor types and poorer patient treatment outcome. GRB10 knockdown markedly reduced prostate cancer cell proliferation and activity of AKT, a well-established CRPC mediator. A positive correlation between AKT activity and GRB10 expression was also found in clinical cohorts. CONCLUSIONS: GRB10 acts as a driver of CRPC and sensitizes androgen receptor pathway inhibitors, and hence GRB10 targeting provides a novel therapeutic strategy for the disease. PATIENT SUMMARY: Development of castration-resistant prostate cancer (CRPC) is a major problem in the management of the disease. Using state-of-the-art patient-derived hormone-naive prostate cancer xenograft models, we found and validated the growth factor receptor bound protein 10 gene as a driver of CRPC, indicating that it may be used as a new molecular target to enhance current CRPC therapy.


Assuntos
Proteína Adaptadora GRB10/genética , Expressão Gênica , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , RNA Mensageiro/metabolismo , Receptores Androgênicos/genética , Animais , Castração , Linhagem Celular Tumoral , Proliferação de Células/genética , Modelos Animais de Doenças , Proteína Adaptadora GRB10/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Masculino , Camundongos , PTEN Fosfo-Hidrolase/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , Transcriptoma , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA