Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.718
Filtrar
1.
Elife ; 132024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775133

RESUMO

Tissue-clearing and labeling techniques have revolutionized brain-wide imaging and analysis, yet their application to clinical formalin-fixed paraffin-embedded (FFPE) blocks remains challenging. We introduce HIF-Clear, a novel method for efficiently clearing and labeling centimeter-thick FFPE specimens using elevated temperature and concentrated detergents. HIF-Clear with multi-round immunolabeling reveals neuron circuitry regulating multiple neurotransmitter systems in a whole FFPE mouse brain and is able to be used as the evaluation of disease treatment efficiency. HIF-Clear also supports expansion microscopy and can be performed on a non-sectioned 15-year-old FFPE specimen, as well as a 3-month formalin-fixed mouse brain. Thus, HIF-Clear represents a feasible approach for researching archived FFPE specimens for future neuroscientific and 3D neuropathological analyses.


Assuntos
Encéfalo , Formaldeído , Neurônios , Inclusão em Parafina , Fixação de Tecidos , Animais , Inclusão em Parafina/métodos , Camundongos , Fixação de Tecidos/métodos , Neurônios/fisiologia , Fixadores/química
2.
Environ Toxicol Pharmacol ; : 104468, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759849

RESUMO

Chlorpyrifos, widely used for pest control, is known to have various harmful effects, although its toxic effects in macrophages and the mechanisms underlying its toxicity remain unclear. The present study investigated the toxic effects of chlorypyrifos in a macrophage cell line. Here, we found that chlorpyrifos induced cytotoxicity and genotoxicity in RAW264.7 macrophages. Moreover, chlorpyrifos induced intracellular ROS production, subsequently leading to lipid peroxidation. Chlorpyrifos reduced the activation of antioxidative enzymes including superoxide dismutase, catalase, and glutathione peroxidase. Chlorpyrifos upregulated HO-1 expression and activated the Keap1-Nrf2 pathway, as indicated by enhanced Nrf2 phosphorylation and Keap1 degradation. Chlorpyrifos exerted effects on the following in a dose-dependent manner: cytotoxicity, genotoxicity, lipid peroxidation, intracellular ROS production, antioxidative enzyme activity reduction, HO-1 expression, Nrf2 phosphorylation, and Keap1 degradation. Notably, N-acetyl-L-cysteine successfully inhibited chlorpyrifos-induced intracellular ROS generation, cytotoxicity, and genotoxicity. Thus, chlorpyrifos may induce cytotoxicity and genotoxicity by promoting intracellular ROS production and suppressing the antioxidative defense system activation in macrophages.

3.
Redox Biol ; 73: 103139, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38696898

RESUMO

In this study, we observed worsening metabolic crosstalk in mouse models with concomitant metabolic disorders such as hyperhomocysteinemia (HHcy), hyperlipidemia, and hyperglycemia and in human coronary artery disease by analyzing metabolic profiles. We found that HHcy worsening is most sensitive to other metabolic disorders. To identify metabolic genes and metabolites responsible for the worsening metabolic crosstalk, we examined mRNA levels of 324 metabolic genes in Hcy, glucose-related and lipid metabolic systems. We examined Hcy-metabolites (Hcy, SAH and SAM) by LS-ESI-MS/MS in 6 organs (heart, liver, brain, lung, spleen, and kidney) from C57BL/6J mice. Through linear regression analysis of Hcy-metabolites and metabolic gene mRNA levels, we discovered that SAH-responsive genes were responsible for most metabolic changes and all metabolic crosstalk mediated by Serine, Taurine, and G3P. SAH-responsive genes worsen glucose metabolism and cause upper glycolysis activation and lower glycolysis suppression, indicative of the accumulation of glucose/glycogen and G3P, Serine synthesis inhibition, and ATP depletion. Insufficient Serine due to negative correlation of PHGDH with SAH concentration may inhibit the folate cycle and transsulfurarion pathway and consequential reduced antioxidant power, including glutathione, taurine, NADPH, and NAD+. Additionally, we identified SAH-activated pathological TG loop as the consequence of increased fatty acid (FA) uptake, FA ß-oxidation and Ac-CoA production along with lysosomal damage. We concluded that HHcy is most responsive to other metabolic changes in concomitant metabolic disorders and mediates worsening metabolic crosstalk mainly via SAH-responsive genes, that organ-specific Hcy metabolism determines organ-specific worsening metabolic reprogramming, and that SAH, acetyl-CoA, Serine and Taurine are critical metabolites mediating worsening metabolic crosstalk, redox disturbance, hypomethylation and hyperacetylation linking worsening metabolic reprogramming in metabolic syndrome.

4.
Int J Mol Sci ; 25(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38791597

RESUMO

Bladder cancer (BC) is a malignant tumor of the urinary system with high mortality and recurrence rates. Proteasome subunit type 4 (PSMB4) is highly expressed and has been identified as having oncogenic properties in a variety of cancer types. This study aimed to explore the effect of PSMB4 knockdown on the survival, migration, and angiogenesis of human bladder cancer cells with different degrees of malignancy. We analyzed the effects of PSMB4 knockdown in bladder cancer cells and endothelial cells in the tumor microenvironment. PSMB4 was highly expressed in patients with low- and high-grade urothelial carcinoma. Inhibition of PSMB4 reduced protein expression of focal adhesion kinase (FAK) and myosin light chain (MLC), leading to reduced migration. Furthermore, the suppression of PSMB4 decreased the levels of vascular endothelial factor B (VEGF-B), resulting in lower angiogenic abilities in human bladder cancer cells. PSMB4 inhibition affected the migratory ability of HUVECs and reduced VEGFR2 expression, consequently downregulating angiogenesis. In the metastatic animal model, PSMB4 knockdown reduced the relative volumes of lung tumors. Our findings suggest the role of PSMB4 as a potential target for therapeutic strategies against human bladder cancer.


Assuntos
Movimento Celular , Neovascularização Patológica , Complexo de Endopeptidases do Proteassoma , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Movimento Celular/genética , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Linhagem Celular Tumoral , Animais , Camundongos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Técnicas de Silenciamento de Genes , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral/genética , Masculino , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Feminino , Angiogênese , Cisteína Endopeptidases
5.
J Clin Med ; 13(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38792280

RESUMO

Background: The comparison between the mini-midvastus (mini-MV) and mini-parapatellar (mini-MPP) approach in total knee arthroplasty (TKA) remains a subject of debate. The present study compared quadriceps activation, pain levels, and clinical outcomes between the two approaches; quadricep activation was assessed using surface electromyography (sEMG). Methods: This retrospective cross-sectional study comprised a total of 78 patients aged between 50 and 85 years with primary osteoarthritis. Patients were divided into a mini-MV (n = 38) group and a mini-MPP (n = 40) group according to the surgical approach. Results: The two groups exhibited no significant differences in sEMG for the vastus medialis (VM) or rectus femoris (RF) at the follow-up time points, with the exception that the mini-MV group exhibited superior strength of RF during extensions at the 2-week follow-up. However, the mini-MPP group had superior Western Ontario and McMaster Universities Index (WOMAC) total and function scores at the 2- and 6-week follow-ups. The mini-MPP group also had superior WOMAC stiffness scores at the 2-week follow-up. The two groups did not differ significantly in terms of pain levels or morphine consumption. Conclusions: The sEMG data of quadriceps muscle would not differ significantly between the mini-MV and mini-MPP approaches for TKA. Moreover, the mini-MPP approach may yield superior WOMAC scores when compared with the mini-MV approach.

6.
Cells ; 13(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38786101

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is characterized, at least in part, by autoimmunity through amplified T helper 1 and 17 (Th1 and Th17) immune responses. The loss of immune tolerance controlled by programmed death-ligand 1 (PD-L1) may contribute to this. OBJECTIVES: We studied the tolerogenic role of PD-L1+ dendritic cells (DCs) and their subtypes in relation to specific T cell immunity and the clinical phenotypes of COPD. METHODS: We used flow cytometry to analyze PD-L1 expression by the DCs and their subtypes in the peripheral blood mononuclear cells (PBMCs) from normal participants and those with COPD. T cell proliferation and the signature cytokines of T cell subtypes stimulated with elastin as autoantigens were measured using flow cytometry and enzyme-linked immunosorbent assays (ELISA), respectively. MEASUREMENT AND MAIN RESULTS: A total of 83 participants were enrolled (normal, n = 29; COPD, n = 54). A reduced PD-L1+ conventional dendritic cell 1 (cDC1) ratio in the PBMCs of the patients with COPD was shown (13.7 ± 13.7%, p = 0.03). The decrease in the PD-L1+ cDC1 ratio was associated with a rapid decline in COPD (p = 0.02) and correlated with the CD4+ T cells (r = -0.33, p = 0.02). This is supported by the NCBI GEO database accession number GSE56766, the researchers of which found that the gene expressions of PD-L1 and CD4, but not CD8 were negatively correlated from PBMC in COPD patients (r = -0.43, p = 0.002). Functionally, the PD-L1 blockade enhanced CD4+ T cell proliferation stimulated by CD3/elastin (31.2 ± 22.3%, p = 0.04) and interleukin (IL)-17A production stimulated by both CD3 (156.3 ± 54.7, p = 0.03) and CD3/elastin (148 ± 64.9, p = 0.03) from the normal PBMCs. The PD-L1 blockade failed to increase IL-17A production in the cDC1-depleted PBMCs. By contrast, there was no significant change in interferon (IFN)-γ, IL-4, or IL-10 after the PD-L1 blockade. Again, these findings were supported by the NCBI GEO database accession number GSE56766, the researchers of which found that only the expression of RORC, a master transcription factor driving the Th17 cells, was significantly negatively correlated to PD-L1 (r = -0.33, p = 0.02). CONCLUSIONS: Circulating PD-L1+ cDC1 was reduced in the patients with COPD, and the tolerogenic role was suppressed with susceptibility to self-antigens and linked to rapid decline caused by Th17-skewed chronic inflammation.


Assuntos
Antígeno B7-H1 , Células Dendríticas , Tolerância Imunológica , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Antígeno B7-H1/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/imunologia , Citocinas/metabolismo
7.
Brain Res ; : 149008, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38761846

RESUMO

A synthetic inhibitor of capsaicin-induced TRPV1 channel activation is called capsazepine (CPZ). In this study, we aimed to explore the effects of CPZ on hyperpolarization-activated cationic current (Ih) and voltage-gated Na + current (INa) in pituitary tumor (GH3) cells. Through patch-clamp recordings, we found that CPZ concentration-dependently inhibited Ih amplitude and slowed its activation time course. The IC50 and KD values were 3.1 and 3.16 µM, respectively. CPZ also shifted the steady-state activation curve of Ih towards a more hyperpolarized potential. However, there was no change in the gating charge of the curve. A modified Markovian model predicted the CPZ-induced decrease in the voltage-dependent hysteresis of Ih. CPZ suppressed INa in GH3 cells, without altering its activation or inactivation time course. Additionally, exposure to CPZ reduced spontaneous firing. These findings suggest that CPZ's inhibitory effects on Ih and INa are direct and not dependent on vanilloid receptor binding. This could provide light on an unidentified ionic mechanism influencing the membrane excitability of neurons and endocrine or neuroendocrine cells in vivo.

8.
J Econ Entomol ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780155

RESUMO

Megalurothrips usitatus (Bagnall) (Thysanoptera: Thripidae) and Frankliniella intonsa (Trybom) (Thysanoptera: Thripidae) have been detrimental to cowpea production in many countries. Laboratory experiments were conducted to determine the prey stage preference and functional response of 2 predatory mites species, Neoseiulus barkeri (Hughes) (Acari: Phytoseiidae), and Neoseiulus californicus (McGregor) (Acari: Phytoseiidae), towards 2 thrips species (TS), M. usitatus, and F. intonsa, at varying densities and life stages on cowpea. Results shown that Neoseiulus species had a preference for different life stages of prey. Neoseiulus barkeri consumed more M. usitatus nymphs, while N. californicus consumed more F. intonsa (second-instar nymphs). The functional response of the 2 Neoseiulus spp. to nymphs of 2 TS was Type II on cowpea. The higher attack rate coefficient (a') and shorter handling time (Th) values were found on N. barkeri against M. usitatus, and a similar trend was found for those in N. californicus against F. intonsa. Field-caged trials were conducted to evaluate the effectiveness of Neoseiulus spp. in controlling 2 TS. The results have shown that Neoseiulus spp. was effective in controlling the 2 TS, with varying control efficacies at high or low release rates. The study provided valuable information on using Neoseiulus spp. as biological control agents against M. usitatus and F. intonsa in cowpea crops.

9.
J Chin Med Assoc ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38768317

RESUMO

BACKGROUND: PSA remains the most useful marker for screening, risk categorization, and follow-up in patients with prostate cancer. In the obese population, several studies have revealed that obesity may not only inversely interfere with the concentration of PSA, but also increase the risk of prostate cancer. Thus, we considered using the Body mass weighted PSA levels, presented as serum PSA concentration multiplied by body weight or BMI, instead of traditional PSA concentration, as potential markers to predict locally advanced prostate cancer after prostatectomy. METHODS: We retrospectively collected and analyzed data acquired from a single institute at which robot-assisted laparoscopic radical prostatectomy was performed. A total of 174 patients underwent radical prostatectomy, and the collected data included age, PSA level, body weight, BMI, and pathology results. RESULTS: A total of 174 patients diagnosed with adenocarcinoma of the prostate by needle biopsy, and most (N=165) were considered to have localized disease on preoperative multi-parameter magnetic resoanace imaging. After prostatectomy, 73% (N=127) of the patients remained in the localized disease group (group A) and 27%(N=47) of the patients were reclassified to the locally advanced prostate cancer (group B). The value of PSA was higher in Group B (16.9 vs 11.2 ng/dL; p= 0.062), but there was no statistically significant difference between the two groups. After using the numerical values of PSA x body weight and PSA x BMI, a statistically significant difference emerged between the two groups (p= 0.0198 in PSA × BW; p=0.0110 in PSA × BMI). CONCLUSION: The Body mass weighted PSA levels, instead of the traditional PSA concentration, may be better markers for predicting non-organ-confined disease after surgery. It may also be useful in screening and risk categorization.

10.
Pest Manag Sci ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656697

RESUMO

BACKGROUND: In agricultural pest management, especially in combatting the invasive red imported fire ant (RIFA, Solenopsis invicta), significant challenges emerge as a consequence of the constraints of solely depending on chemical insecticides or entomopathogenic nematodes (EPNs). The utilization of chemical insecticides carries environmental and ecological hazards, whereas EPNs, when applied independently, might not offer the immediate effectiveness necessary for adequate RIFA suppression. Acknowledging these hurdles, our study investigates a synergistic method that integrates EPNs with chemical insecticides, aiming to fulfill the urgent demand for more efficient and environmentally friendly pest control solutions. RESULTS: Our evaluation focused on the interaction between the highly pathogenic Steinernema riobrave 7-12 EPN strain and prevalent insecticides, specifically beta-cypermethrin and a mixture of bifenthrin and clothianidin, applied at highly diluted recommended concentrations. The findings revealed a notable increase in RIFA mortality rates when EPNs and these insecticides were used together, outperforming the results achieved with each method individually. Remarkably, this enhanced efficacy was especially evident at lower concentrations of the bifenthrin-clothianidin mixture, indicating a valuable approach to minimizing reliance on chemical insecticides in agriculture. Furthermore, the high survival rates of EPNs alongside the tested insecticides indicate their compatibility and potential for sustained use in integrated pest management programs. CONCLUSION: Our research underscores the effectiveness of merging EPNs with chemical insecticides as a powerful and sustainable strategy for RIFA management. This combined approach not only meets the immediate challenges of pest control in agricultural settings, but also supports wider environmental objectives by reducing the dependency on chemical insecticides. © 2024 Society of Chemical Industry.

11.
Micromachines (Basel) ; 15(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38675293

RESUMO

Piezoelectric micromachined ultrasound transducers (PMUTs) have gained significant popularity in the field of ultrasound ranging and medical imaging owing to their small size, low power consumption, and affordability. The scar-free "MIS" (micro-hole inter-etch and sealing) process, a novel bulk-silicon manufacturing technique, has been successfully developed for the fabrication of pressure sensors, flow sensors, and accelerometers. In this study, we utilize the MIS process to fabricate cavity diaphragm structures for PMUTs, resulting in the formation of a flat cavity diaphragm structure through anisotropic etching of (111) wafers in a 70 °C tetramethylammonium hydroxide (TMAH) solution. This study investigates the corrosion characteristics of the MIS technology on (111) silicon wafers, arranges micro-pores etched on bulk silicon around the desired cavity structure in a regular pattern, and takes into consideration the distance compensation for lateral corrosion, resulting in a fully connected cavity structure closely approximating an ortho-hexagonal shape. By utilizing a sputtering process to deposit metallic molybdenum as upper and lower electrodes, as well as piezoelectric materials above the cavity structure, we have successfully fabricated aluminum nitride (AlN) piezoelectric ultrasonic transducer arrays of various sizes and structures. The final hexagonal PMUT cells of various sizes that were fabricated achieved a maximum quality factor (Q) of 251 and a displacement sensitivity of 18.49 nm/V across a range of resonant frequencies from 6.28 MHz to 11.99 MHz. This fabrication design facilitates the achievement of IC-compatible and cost-effective mass production of PMUT array devices with high resonance frequencies.

12.
Steroids ; 207: 109426, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38685461

RESUMO

Multiple epidemiologic studies have revealed that gender is considered one of the important factors in the frequency and severity of certain infectious diseases, in which estrogens may play a vital role. There is growing evidence that estrogens as female sex hormone can modulate multiple biological functions outside of the reproductive system, such as in brain and cardiovascular system. However, it is largely unknown about the roles and mechanisms of estrogens/estrogen receptors in immune health and infection disease. Thence, by reading a lot of literature, we summarized the regulatory mechanisms of estrogens/estrogen receptors in immune cells and their roles in certain infectious diseases with gender differences. Therefore, estrogens may have therapeutic potentials to prevent and treat these infectious diseases, which needs further clinical investigation.

13.
AoB Plants ; 16(2): plae019, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38660049

RESUMO

It is of great significance to study the plant morphological structure for improving crop yield and achieving efficient use of resources. Three dimensional (3D) information can more accurately describe the morphological and structural characteristics of crop plants. Automatic acquisition of 3D information is one of the key steps in plant morphological structure research. Taking wheat as the research object, we propose a point cloud data-driven 3D reconstruction method that achieves 3D structure reconstruction and plant morphology parameterization at the phytomer scale. Specifically, we use the MVS-Pheno platform to reconstruct the point cloud of wheat plants and segment organs through the deep learning algorithm. On this basis, we automatically reconstructed the 3D structure of leaves and tillers and extracted the morphological parameters of wheat. The results show that the semantic segmentation accuracy of organs is 95.2%, and the instance segmentation accuracy AP50 is 0.665. The R2 values for extracted leaf length, leaf width, leaf attachment height, stem leaf angle, tiller length, and spike length were 0.97, 0.80, 1.00, 0.95, 0.99, and 0.95, respectively. This method can significantly improve the accuracy and efficiency of 3D morphological analysis of wheat plants, providing strong technical support for research in fields such as agricultural production optimization and genetic breeding.

14.
Biomater Adv ; 160: 213855, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643692

RESUMO

This research introduces a novel method that leverages Spirulina extract (S.E) as a bio-surfactant in the ultrasound-assisted synthesis (UAS) of Pd3+ (0.25-10 mol%) doped tin oxide (SnO2) self-assembled superstructures. Nanotechnology has witnessed significant advancements in recent years, driven by the exploration of novel synthesis methods and the development of advanced nanomaterials tailored for specific applications. Metal oxide nanoparticles, particularly SnO2, have garnered considerable attention due to their versatile properties and potential applications in various fields, including gas sensing, catalysis, and biomedical engineering. The study explores how varying influential parameters like S.E concentration, sonication time, pH, and sonication power can influence the resulting superstructures' morphology, size, and shape. A theoretical model for forming different hierarchical superstructures (HS) is proposed. X-ray diffraction (XRD) analysis confirms the crystalline tetragonal rutile phase of the SnO2:Pd HS. Raman spectroscopy reveals a red shift in the A1g mode, indicating phonon confinement due to various defects in the SnO2 structure. Further characterization using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) provides insights into particle size, surface morphology, elemental composition, and binding energy. The study also demonstrates the application of optimized SnO2:3Pd HS in developing latent fingerprints (LFPs) on different surfaces using a simple powder dusting (PD) method, with the fingerprints (FPs) visualized under normal light. A mathematical model developed in Python-based software is used to analyze various features of the developed FPs, including pore properties such as number, position, inter-spacing, area, and shape. Additionally, an in vitro MTT assay shows concentration-dependent anticancer activity of SnO2:3Pd nanoparticles (NPs) on MCF7 cell lines, highlighting their potential as a promising cancer treatment option. Overall, the study suggests that the optimized HS can serve as multifunctional platforms for biomedical and dermatoglyphics applications, demonstrating the versatility and potential of the synthesized materials.


Assuntos
Antineoplásicos , Paládio , Compostos de Estanho , Compostos de Estanho/química , Compostos de Estanho/farmacologia , Humanos , Paládio/química , Paládio/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Nanopartículas Metálicas/química , Células MCF-7
15.
Neurophotonics ; 11(2): 024207, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38577628

RESUMO

Significance: Genetically encoded calcium ion (Ca2+) indicators (GECIs) are powerful tools for monitoring intracellular Ca2+ concentration changes in living cells and model organisms. In particular, GECIs have found particular utility for monitoring the transient increase of Ca2+ concentration that is associated with the neuronal action potential. However, the palette of highly optimized GECIs for imaging of neuronal activity remains relatively limited. Expanding the selection of available GECIs to include new colors and distinct photophysical properties could create new opportunities for in vitro and in vivo fluorescence imaging of neuronal activity. In particular, blue-shifted variants of GECIs are expected to have enhanced two-photon brightness, which would facilitate multiphoton microscopy. Aim: We describe the development and applications of T-GECO1-a high-performance blue-shifted GECI based on the Clavularia sp.-derived mTFP1. Approach: We use protein engineering and extensive directed evolution to develop T-GECO1. We characterize the purified protein and assess its performance in vitro using one-photon excitation in cultured rat hippocampal neurons, in vivo using one-photon excitation fiber photometry in mice, and ex vivo using two-photon Ca2+ imaging in hippocampal slices. Results: The Ca2+-bound state of T-GECO1 has an excitation peak maximum of 468 nm, an emission peak maximum of 500 nm, an extinction coefficient of 49,300 M-1 cm-1, a quantum yield of 0.83, and two-photon brightness approximately double that of EGFP. The Ca2+-dependent fluorescence increase is 15-fold, and the apparent Kd for Ca2+ is 82 nM. With two-photon excitation conditions at 850 nm, T-GECO1 consistently enabled the detection of action potentials with higher signal-to-noise (SNR) than a late generation GCaMP variant. Conclusions: T-GECO1 is a high-performance blue-shifted GECI that, under two-photon excitation conditions, provides advantages relative to late generation GCaMP variants.

16.
Materials (Basel) ; 17(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612192

RESUMO

This study investigates the effects of zinc (4 wt.%) and severe plastic deformation on the mechanical properties of AZ61 magnesium alloy through the stir-casting process. Severe plastic deformation (Equal Channel Angular Pressing (ECAP)) has been performed followed by T4 heat treatment. The microstructural examinations revealed that the addition of 4 wt.% Zn enhances the uniform distribution of ß-phase, contributing to a more uniformly corroded surface in corrosive environments. Additionally, dynamic recrystallization (DRX) significantly reduces the grain size of as-cast alloys after undergoing ECAP. The attained mechanical properties demonstrate that after a single ECAP pass, AZ61 + 4 wt.% Zn alloy exhibits the highest yield strength (YS), ultimate compression strength (UCS), and hardness. This research highlights the promising potential of AZ61 + 4 wt.% Zn alloy for enhanced mechanical and corrosion-resistant properties, offering valuable insights for applications in diverse engineering fields.

17.
Arch Toxicol ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635053

RESUMO

3-Bromofluoranthene (3-BrFlu) is the secondary metabolite of fluoranthene, which is classified as a polycyclic aromatic hydrocarbon, through bromination and exists in the fine particulate matter of air pollutants. Endothelial dysfunction plays a critical role in the pathogenesis of cardiovascular and vascular diseases. Little is known about the molecular mechanism of 3-BrFlu on endothelial dysfunction in vivo and in vitro assay. In the present study, 3-BrFlu included concentration-dependent changes in ectopic angiogenesis of the sub-intestinal vein and dilation of the dorsal aorta in zebrafish. Disruption of vascular endothelial integrity and up-regulation of vascular endothelial permeability were also induced by 3-BrFlu in a concentration-dependent manner through pro-inflammatory responses in vascular endothelial cells, namely, SVEC4-10 cells. Generation of pro-inflammatory mediator PGE2 was induced by 3-BrFlu through COX2 expression. Expression of COX2 and generation of pro-inflammatory cytokines, including TNFα and IL-6, were induced by 3-BrFlu through phosphorylation of NF-κB p65, which was mediated by phosphorylation of MAPK, including p38 MAPK, ERK and JNK. Furthermore, generation of intracellular ROS was induced by 3-BrFlu, which is associated with the down-regulated activities of the antioxidant enzyme (AOE), including SOD and catalase. We also found that 3-BrFlu up-regulated expression of the AOE and HO-1 induced by 3-BrFlu through Nrf-2 expression. However, the 3-BrFlu-induced upregulation of AOE and HO-1 expression could not be revised the responses of vascular endothelial dysfunction. In conclusion, 3-BrFlu is a hazardous substance that results in vascular endothelial dysfunction through the MAPK-mediated-NFκB pro-inflammatory pathway and intracellular ROS generation.

18.
Sheng Li Xue Bao ; 76(2): 215-223, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658371

RESUMO

This study aimed to investigate the effects of microtubule associated tumor suppressor 1 (MTUS1) on hemeoxygenase 1 (HMOX1) expression and hemin-induced apoptosis of vascular endothelial cells and its regulatory mechanism. RNA sequencing, RT-qPCR and Western blot were used to assess altered genes of hemin binding proteins, the expression of cAMP response element-binding protein (CREB) and nuclear respiratory factor 2 (NRF2), hemin-induced HMOX1 expression in MTUS1 knockdown human umbilical vein endothelial cells (HUVEC), and the effect of overexpression of CREB and NRF2 on HMOX1 expression in MTUS1 knockdown 293T cells. The effect of MTUS1 or HMOX1 knockdown on hemin-induced apoptosis in HUVEC, and the overexpression of NRF2 on hemin-induced apoptosis in MTUS1 knockdown 293T cells were assayed with CCK8 and Western blot. The results showed that MTUS1 was knocked down significantly in HUVEC by siRNA (P < 0.01), accompanied by decreased HMOX1 expression (P < 0.01). The increased HMOX1 expression induced by hemin was also inhibited by MTUS1 knockdown (P < 0.01). And the apoptosis of HUVEC induced by hemin was amplified by MTUS1 or HMOX1 knockdown (P < 0.01). Moreover the expression of CREB and NRF2 were both inhibited by MTUS1 knockdown in HUVEC (P < 0.01). The decreased HMOX1 regulated by MTUS1 knockdown could be rescued partly by overexpression of NRF2 (P < 0.01), however, not by overexpression of CREB. And the MTUS1 knockdown mediated decreased 293T cells viability induced by hemin could be partly rescued by NRF2 overexpression (P < 0.01). These results suggest that MTUS1 can inhibit hemin-induced apoptosis of HUVEC, and the mechanism maybe related to MTUS1/NRF2/HMOX1 pathway.


Assuntos
Apoptose , Heme Oxigenase-1 , Hemina , Células Endoteliais da Veia Umbilical Humana , Fator 2 Relacionado a NF-E2 , Humanos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Técnicas de Silenciamento de Genes , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Hemina/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética
19.
Polymers (Basel) ; 16(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38611179

RESUMO

As a promising candidate for high-energy-density rechargeable lithium metal batteries, Li/FeS2 batteries still suffer from the large volume change and severe shuttle effect of lithium polysulfides during cycling. To improve the electrochemical performance, great efforts have been made to modify FeS2 cathodes by constructing various nanocomposites. However, energy density is sacrificed, and these materials are not applicable at a large scale. Herein, we report that the electrochemical performance of commercial FeS2 can be greatly enhanced with the application of a double-layer MoS2-CNTs-PVA (MCP)/PVA separator fabricated by electrospinning. The assembled Li/FeS2 batteries can still deliver a high discharge capacity of 400 mAh/g after 200 cycles at a current density of 0.5 C. The improved cycling stability can be attributed to the strong affinity towards lithium polysulfides (LiPSs) of the hydroxyl-rich PVA matrix and the unique double-layer structure, in which the bottom layer acts as an electrical insulation layer and the top layer coupled with MoS2/CNTs provides catalytic sites for LiPS conversion.

20.
Environ Toxicol ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572681

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a prevalent malignant tumor of the digestive system that poses a significant threat to human life and health. It is crucial to thoroughly investigate the mechanisms of esophageal carcinogenesis and identify potential key molecular events in its carcinogenesis. Single-cell transcriptome sequencing is an emerging technology that has gained prominence in recent years for studying molecular mechanisms, which may help to further explore the underlying mechanisms of the ESCC tumor microenvironment in depth. The single-cell dataset was obtained from GSE160269 in the Gene Expression Omnibus database, including 60 tumor samples and four paracancer samples. The single-cell data underwent dimensional reduction clustering analysis to identify clusters and annotate expression profiles. Subcluster analysis was conducted for each cellular taxon. Copy number variation analysis of tumor cell subpopulations was performed to primarily identify malignant cells within them. A proposed chronological analysis was performed to obtain the process of cell differentiation. In addition, cell communication, transcription factor analysis, and tumor pathway analysis were also performed. Relevant risk models and key genes were established by univariate COX regression and LASSO analysis. The key genes obtained from the screen were subjected to appropriate silencing and cellular assays, including CCK-8, 5-ethynyl-2'-deoxyuridine, colony formation, and western blot. Single-cell analysis revealed that normal samples contained a large number of fibroblasts, T cells, and B cells, with fewer other cell types, whereas tumor samples exhibited a relatively balanced distribution of cell types. Subclassification analysis of immune cells, fibroblasts, endothelial cells, and epithelial cells revealed their specific spatial characteristics. The prognostic risk model, we constructed successfully, achieved accurate prognostic stratification for ESCC patients. The screened key gene, UPF3A, was found to be significantly associated with the development of ESCC by cellular assays. This process might be linked to the phosphorylation of ERK and P38. Single-cell transcriptome analysis successfully revealed the distribution of cell types and major expressed factors in ESCC patients, which could facilitate future in-depth studies on the therapeutic mechanisms of ESCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA