Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; : e2311336, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38385851

RESUMO

The electrocatalytic conversion of nitrate (NO3 - ) to NH3 (NO3 RR) at ambient conditions offers a promising alternative to the Haber-Bosch process. The pivotal factors in optimizing the proficient conversion of NO3 - into NH3 include enhancing the adsorption capabilities of the intermediates on the catalyst surface and expediting the hydrogenation steps. Herein, the Cu/Cu2 O/Pi NWs catalyst is designed based on the directed-evolution strategy to achieve an efficient reduction of NO3 ‾. Benefiting from the synergistic effect of the OV -enriched Cu2 O phase developed during the directed-evolution process and the pristine Cu phase, the catalyst exhibits improved adsorption performance for diverse NO3 RR intermediates. Additionally, the phosphate group anchored on the catalyst's surface during the directed-evolution process facilitates water electrolysis, thereby generating Hads on the catalyst surface and promoting the hydrogenation step of NO3 RR. As a result, the Cu/Cu2 O/Pi NWs catalyst shows an excellent FE for NH3 (96.6%) and super-high NH3 yield rate of 1.2 mol h-1  gcat. -1 in 1 m KOH and 0.1 m KNO3 solution at -0.5 V versus RHE. Moreover, the catalyst's stability is enhanced by the stabilizing influence of the phosphate group on the Cu2 O phase. This work highlights the promise of a directed-evolution approach in designing catalysts for NO3 RR.

2.
Adv Sci (Weinh) ; 10(33): e2303789, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37822155

RESUMO

The electrocatalytic conversion of nitrate (NO3 ‾) to NH3  (NO3 RR) offers a promising alternative to the Haber-Bosch process. However, the overall kinetic rate of NO3 RR is plagued by the complex proton-assisted multiple-electron transfer process. Herein, Ag/Co3 O4 /CoOOH nanowires (i-Ag/Co3 O4  NWs) tandem catalyst is designed to optimize the kinetic rate of intermediate reaction for NO3 RR simultaneously. The authors proved that NO3 ‾ ions are reduced to NO2 ‾ preferentially on Ag phases and then NO2 ‾ to NO on Co3 O4  phases. The CoOOH phases catalyze NO reduction to NH3  via NH2 OH intermediate. This unique catalyst efficiently converts NO3 ‾ to NH3  through a triple reaction with a high Faradaic efficiency (FE) of 94.3% and a high NH3  yield rate of 253.7 µmol h-1  cm-2  in 1 M KOH and 0.1 M KNO3  solution at -0.25 V versus RHE. The kinetic studies demonstrate that converting NH2 OH into NH3  is the rate-determining step (RDS) with an energy barrier of 0.151 eV over i-Ag/Co3 O4  NWs. Further applying i-Ag/Co3 O4  NWs as the cathode material, a novel Zn-nitrate battery exhibits a power density of 2.56 mW cm-2  and an FE of 91.4% for NH3  production.

3.
ACS Appl Mater Interfaces ; 15(15): 18928-18939, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37014152

RESUMO

In alkaline solutions, the electrocatalytic conversion of nitrates to ammonia (NH3) (NO3RR) is hindered by the sluggish hydrogenation step due to the lack of protons on the electrode surface, making it a grand challenge to synthesize NH3 at a high rate and selectivity. Herein, single-stranded deoxyribonucleic acid (ssDNA)-templated copper nanoclusters (CuNCs) were synthesized for the electrocatalytic production of NH3. Because ssDNA was involved in the optimization of the interfacial water distribution and H-bond network connectivity, the water-electrolysis-induced proton generation was enhanced on the electrode surface, which facilitated the NO3RR kinetics. The activation energy (Ea) and in situ spectroscopy studies adequately demonstrated that the NO3RR was exothermic until NH3 desorption, indicating that, in alkaline media, the NO3RR catalyzed by ssDNA-templated CuNCs followed the same reaction path as the NO3RR in acidic media. Electrocatalytic tests further verified the efficiency of ssDNA-templated CuNCs, which achieved a high NH3 yield rate of 2.62 mg h-1 cm-2 and a Faraday efficiency of 96.8% at -0.6 V vs reversible hydrogen electrode. The results of this study lay the foundation for engineering catalyst surface ligands for the electrocatalytic NO3RR.

4.
Front Plant Sci ; 13: 847199, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386667

RESUMO

Bacterial blight (BB) of rice caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most serious bacterial diseases that hinder the normal growth and production of rice, which greatly reduces the quality and yield of rice. The effect of traditional methods such as chemical control is often not ideal. A series of production practices have shown that among the numerous methods for BB controlling, breeding and using resistant varieties are the most economical, effective, and environmentally friendly, and the important basis for BB resistance breeding is the exploration of resistance genes and their functional research. So far, 44 rice BB resistance genes have been identified and confirmed by international registration or reported in journals, of which 15 have been successfully cloned and characterized. In this paper, research progress in recent years is reviewed mainly on the identification, map-based cloning, molecular resistance mechanism, and application in rice breeding of these BB resistance genes, and the future influence and direction of the remained research for rice BB resistance breeding are also prospected.

5.
Chem Commun (Camb) ; 55(95): 14363-14366, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31720613

RESUMO

A unique 1,3-dipolar [3+2] cycloaddition of alkyl 4-oxo-4-arylbut-2-enoates bearing two different electron-withdrawing groups was completed by using the silver/(R)-DTBM-Segphos catalyst system, which gives the corresponding fully substituted pyrrolidines with four stereogenic centers in good yields and with excellent enantioselectivities (up to 98% ee).

6.
Biomacromolecules ; 18(12): 4364-4372, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29111688

RESUMO

Here, we fabricated the ionic liquid (IL) grafted poly(vinylidene fluoride) (PVDF) (PVDF-g-IL) via electron-beam irradiation to fight common bacteria and multidrug-resistant "superbugs". Two types of ILs, 1-vinyl-3-butylimmidazolium chloride (IL (Cl)) and 1-vinyl-3-ethylimidazolium tetrafluoroborate (IL (BF4)), were used. It was found that the PVDF-g-IL exhibited superior antibacterial performance, with almost the same mechanical and thermal performance as unmodified PVDF. Nonwovens and films made from PVDF-g-IL materials exhibited broad-spectrum antimicrobial activity against common bacteria and "superbugs" with the strong electrostatic interactions between ILs and microbial cell membranes. With extremely low IL loading (0.05 wt %), the cell reduction of PVDF-g-IL (Cl) nonwovens improved from 0.2 to 4.4 against S. aureus. Moreover, the antibacterial activity of PVDF-g-IL nonwovens was permanent for the covalent bonds between ILs and polymer chains. The work provides a simple strategy to immobilize ionic antibacterial agents onto polymer substrates, which may have great potential applications in healthcare and household applications.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Líquidos Iônicos/química , Íons/química , Polímeros/química , Polivinil/química , Eletricidade Estática , Propriedades de Superfície
7.
J Pharm Sci ; 93(7): 1924-39, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15176079

RESUMO

We describe the physiochemical characterization and immunological evaluation of plasmid DNA vaccine formulations containing a nonionic triblock copolymer adjuvant (CRL1005) in the presence and absence of a cationic surfactant, benzalkonium chloride (BAK). CRL1005 forms particles of 1-10 microns upon warming above its phase-transition temperature (approximately 6-8 degrees C) and the physical properties of the particles are altered by BAK. DNA/CRL1005 vaccines formulated with and without BAK were evaluated in rhesus macaques to determine the effect of CRL1005 and BAK on the ability of plasmid DNA to induce a cellular immune response. Immunogenicity results indicate that the addition of CRL1005 to human immunodeficiency virus-1 gag plasmid DNA formulated in phosphate-buffered saline leads to an enhancement in the gag-specific cellular immune response. Moreover, the addition of BAK to human immunodeficiency virus-1 gag plasmid DNA/CRL1005 formulations produces an additional enhancement in gag-specific cellular immunity. In vitro characterization studies of DNA/CRL1005 formulations indicate no detectable binding of DNA to CRL1005 particles in the absence of BAK, suggesting that the enhancement of cellular immunity induced by DNA/CRL1005 formulations is not due to enhanced DNA delivery. In the presence of BAK, however, results indicate that BAK binds to CRL1005 particles, producing cationic microparticles that bind DNA through electrostatic interactions. If BAK is present at the phase-transition temperature, it reduces the particle size from approximately 2 microns to approximately 300 nm, presumably by binding to hydrophobic surfaces during particle formation. Zeta potential measurements indicate that the surface charge of CRL1005-BAK particles changes from positive to negative upon DNA binding, and DNA bound to the surface of CRL1005-BAK particles was visualized by fluorescence microscopy. These results indicate that the addition of BAK to DNA/CRL1005 formulations leads to the formation of approximately 300 nm CRL1005-BAK-DNA particles that enhance the cellular immune response in rhesus monkeys.


Assuntos
Adjuvantes Farmacêuticos/química , Microesferas , Plasmídeos/química , Vacinas de DNA/química , Adjuvantes Farmacêuticos/administração & dosagem , Animais , Bovinos , Química Farmacêutica , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Imunidade Celular/imunologia , Macaca mulatta , Tamanho da Partícula , Plasmídeos/administração & dosagem , Plasmídeos/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA