Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(12): e2307396, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38225755

RESUMO

The utilization of hot carriers as a means to surpass the Shockley-Queasier limit represents a promising strategy for advancing highly efficient photovoltaic devices. Quantum dots, owing to their discrete energy states and limited multi-phonon cooling process, are regarded as one of the most promising materials. However, in practical implementations, the presence of numerous defects and discontinuities in colloidal quantum dot (CQD) films significantly curtails the transport distance of hot carriers. In this study, the harnessing of excess energies from hot-carriers is successfully demonstrated and a world-record carrier diffusion length of 15 µm is observed for the first time in colloidal systems, surpassing existing hot-carrier materials by more than tenfold. The observed phenomenon is attributed to the specifically designed honeycomb-like topological structures in a HgTe CQD superlattice, with its long-range periodicity confirmed by High-Resolution Transmission Electron Microscopy(HR-TEM), Selected Area Electron Diffraction(SAED) patterns, and low-angle X-ray diffraction (XRD). In such a superlattice, nonlocal hot carrier transport is supported by three unique physical properties: the wavelength-independent responsivity, linear output characteristics and microsecond fast photoresponse. These findings underscore the potential of HgTe CQD superlattices as a feasible approach for efficient hot carrier collection, thereby paving the way for practical applications in highly sensitive photodetection and solar energy harvesting.

2.
ACS Nano ; 17(13): 12563-12572, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37186552

RESUMO

The two-dimensional layered material CuInP2S6 (CIPS) has attracted significant research attention due to its nontrivial physical properties, including room-temperature ferroelectricity at the ultrathin limit and substantial ionic conductivity. Despite many efforts to control its ionic conductance and develop electronic devices, such as memristors, improving the stability of these devices remains a challenge. This work presents a highly stable threshold-switching device based on the Cu/CIPS/graphene heterostructure, achieved after a comprehensive investigation of the activation of Cu's ionic conductivity. The device exhibits exceptional threshold-switching performance, including good cycling endurance, a high on/off ratio of up to 104, low operation voltages, and an ultrasmall subthreshold swing of less than 1.8 mV/decade for the resistance-switching process. Through temperature-dependent electrical and Raman spectroscopy measurements, the stable resistive-switching mechanism is interpreted with a drifting and diffusion model of Cu ions under the electric field, rather than the conventional conducting filament mechanism. These results make the layered ferroionic CIPS material a promising candidate for information storage devices, demonstrating a compelling approach to achieving high-performance threshold-switching memristor devices.

3.
Artigo em Inglês | MEDLINE | ID: mdl-35852172

RESUMO

Organic-inorganic hybrid semiconducting (OIHS) materials, which can detect broader spectral regions, are highly desired in several applications including biomedical imaging, night vision, and optical communications. Although lead (Pb)-halide perovskites have reached a mature research stage, high toxicity of Pb hinders their large-scale viability. Tin (Sn)-based perovskites are the most common OIHS broadband light absorbers that replace toxic Pb; however, they are extremely unstable due to the notorious Sn2+ oxidation. Herein, a novel, non-toxic, and solution-processed millimeter-sized OIHS single crystal [Ga(C3H7NO)6](I3)3 has been grown at room temperature. Both the absorption measurement and density functional theory calculations have confirmed a narrow indirect band gap of 1.32 eV. The corresponding photodetector based on this single crystal demonstrated excellent performance including an ultraviolet-visible-near infrared (UV-vis-NIR) response between 325 and 1064 nm, fast response time (trise/tdecay = 3.8 ms/5.4 ms), and profound air storage stability (41 h), thus outperforming most common photodetectors based on Sn-based perovskites. This work not only provides a profound understanding of this novel organic-inorganic single-crystal material but also demonstrates its great potential to realize the high-performance UV-vis-NIR broadband photodetectors.

4.
Nat Commun ; 13(1): 3198, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680950

RESUMO

With the further miniaturization and integration of multi-dimensional optical information detection devices, polarization-sensitive photodetectors based on anisotropic low-dimension materials have attractive potential applications. However, the performance of these devices is restricted by intrinsic property of materials leading to a small polarization ratio of the detectors. Here, we construct a black phosphorus (BP) homojunction photodetector defined by ferroelectric domains with ultra-sensitive polarization photoresponse. With the modulation of ferroelectric field, the BP exhibits anisotropic dispersion changes, leading an increased photothermalelectric (PTE) current in the armchair (AC) direction. Moreover, the PN junction can promote the PTE current and accelerate carrier separation. As a result, the BP photodetector demonstrates an ultrahigh polarization ratio (PR) of 288 at 1450 nm incident light, a large photoresponsivity of 1.06 A/W, and a high detectivity of 1.27 × 1011 cmHz1/2W-1 at room temperature. This work reveals the great potential of BP in future polarized light detection.

5.
Sci Adv ; 8(19): eabn1811, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35544556

RESUMO

New-generation infrared detectors call for higher operation temperature and polarization sensitivity. For traditional HgCdTe infrared detectors, the additional polarization optics and cryogenic cooling are necessary to achieve high-performance infrared polarization detection, while they can complicate this system and limit the integration. Here, a mixed-dimensional HgCdTe/black phosphorous van der Waals heterojunction photodiode is proposed for polarization-sensitive midwave infrared photodetection. Benefiting from van der Waals integration, type III broken-gap band alignment heterojunctions are achieved. Anisotropy optical properties of black phosphorous bring polarization sensitivity from visible light to midwave infrared without external optics. Our devices show an outstanding performance at room temperature without applied bias, with peak blackbody detectivity as high as 7.93 × 1010 cm Hz1/2 W-1 and average blackbody detectivity over 2.1 × 1010 cm Hz1/2 W-1 in midwave infrared region. This strategy offers a possible practical solution for next-generation infrared detector with high operation temperature, high performance, and multi-information acquisition.

6.
RSC Adv ; 12(8): 4939-4945, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35425495

RESUMO

Flexible optoelectronic devices have numerous applications in personal wearable devices, bionic detectors, and other systems. There is an urgent need for functional materials with appealing electrical and optoelectronic properties, stretchable electrodes with outstanding mechanical flexibility, and gate medium with flexibility and low power consumption. Two-dimensional transition metal dichalcogenides (TMDCs), a novel kind of widely studied optoelectrical material, have good flexibility for their ultrathin nature. P(VDF-TrFE) is a kind of organic material with good flexibility which has been proved to be a well-performing ferroelectric gate material for photodetectors. Herein, we directly fabricated a well-performing photodetector based on ReS2 and P(VDF-TrFE) on a flexible substrate. The device achieved a high responsivity of 11.3 A W-1 and a high detectivity of 1.7 × 1010 Jones from visible to near-infrared. Moreover, with strain modulation, the device's responsivity improved 2.6 times, while the detectivity improved 1.8 times. This research provides a prospect of flexible photodetectors in the near-infrared wavelength.

7.
ACS Appl Mater Interfaces ; 13(6): 7766-7772, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33543928

RESUMO

The development of novel low-dimensional materials makes the metallic contact to nanostructure facing challenges. Compared to side contacts, end-bonded contacts are proposed to be more effective pathways for charge injection and extraction. However, there is a lack of up-to-date understanding regarding end-bonded contacts, especially the recently emerged high-performance field-effect transistors (FETs). Here, the end-bonded contacts in tellurium (Te) transistors are first achieved by inducing metal semiconductor alloy. The formation of Pd-Te alloy structure is confirmed by a high-resolution transmission electron microscope (HRTEM) in Te-nanorod-based FETs. The ultralow specific contact resistance is estimated to be 5.1 × 10-9 Ω cm2 by the transmission line mode. On the basis of this finding, Te FETs are shown to exhibit incredible electronic properties, metal-insulator transition, and photodetection performance. This in-depth investigation of the end-bonded contact between Pd and Te speeds up the potential application of Te nanostructure and provides a feasible method for contact engineering in advanced devices.

8.
Adv Mater ; 32(16): e1907937, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32104952

RESUMO

Doped p-n junctions are fundamental electrical components in modern electronics and optoelectronics. Due to the development of device miniaturization, the emergence of two-dimensional (2D) materials may initiate the next technological leap toward the post-Moore era owing to their unique structures and physical properties. The purpose of fabricating 2D p-n junctions has fueled many carrier-type modulation methods, such as electrostatic doping, surface modification, and element intercalation. Here, by using the nonvolatile ferroelectric field polarized in the opposite direction, efficient carrier modulation in ambipolar molybdenum telluride (MoTe2 ) to form a p-n homojunction at the domain wall is demonstrated. The nonvolatile MoTe2 p-n junction can be converted to n-p, n-n, and p-p configurations by external gate voltage pulses. Both rectifier diodes exhibited excellent rectifying characteristics with a current on/off ratio of 5 × 105 . As a photodetector/photovoltaic, the device presents responsivity of 5 A W-1 , external quantum efficiency of 40%, specific detectivity of 3 × 1012 Jones, fast response time of 30 µs, and power conversion efficiency of 2.5% without any bias or gate voltages. The MoTe2 p-n junction presents an obvious short-wavelength infrared photoresponse at room temperature, complementing the current infrared photodetectors with the inadequacies of complementary metal-oxide-semiconductor incompatibility and cryogenic operation temperature.

9.
Nat Commun ; 11(1): 101, 2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31900395

RESUMO

Sensitive photodetection is crucial for modern optoelectronic technology. Two-dimensional molybdenum disulfide (MoS2) with unique crystal structure, and extraordinary electrical and optical properties is a promising candidate for ultrasensitive photodetection. Previously reported methods to improve the performance of MoS2 photodetectors have focused on complex hybrid systems in which leakage paths and dark currents inevitably increase, thereby reducing the photodetectivity. Here, we report an ultrasensitive negative capacitance (NC) MoS2 phototransistor with a layer of ferroelectric hafnium zirconium oxide film in the gate dielectric stack. The prototype photodetectors demonstrate a hysteresis-free ultra-steep subthreshold slope of 17.64 mV/dec and ultrahigh photodetectivity of 4.75 × 1014 cm Hz1/2 W-1 at room temperature. The enhanced performance benefits from the combined action of the strong photogating effect induced by ferroelectric local electrostatic field and the voltage amplification based on ferroelectric NC effect. These results address the key challenges for MoS2 photodetectors and offer inspiration for the development of other optoelectronic devices.

10.
Intervirology ; 54(5): 268-75, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21242657

RESUMO

AIMS: To evaluate the stability of coxsackievirus B (CVB) genome integrated with the enhanced green fluorescent protein gene (egfp) and provide valuable information for the use of the recombinant CVB variant. METHODS: A CVB3 variant expressing eGFP was constructed by insertion of the egfp open-reading frame (ORF) at the 5' end of CVB3 ORF. The recombinant virus CVB3-eGFP was serially passaged in HeLa cells. The deletions in the CVB3-eGFP genome around egfp were examined by reverse transcription polymerase chain reaction and sequencing. RESULTS: Genomic deletions of CVB3-eGFP could be observed as early as the 2nd passage. Sequencing showed that the genomic deletions caused either viral ORF shifts or partial deletions of the viral VP4 coding sequence. The 6th passage of CVB3-eGFP was checked by plaque assay for eGFP expression. All plaque-like foci showed eGFP expression. eGFP expression was also viewed in HeLa cells infected with plaque-forming viruses. CONCLUSIONS: The insertion of egfp destabilized the CVB3 genome. The genomic deletions led to lethal mutations because of the termination of viral protein synthesis due to viral ORF shift and loss of partial viral gene. These findings imply that experimental data based on CVB integrated with the reporter gene should be interpreted with caution.


Assuntos
Enterovirus Humano B/genética , Genoma Viral , Instabilidade Genômica , Proteínas de Fluorescência Verde/genética , Recombinação Genética , Células HeLa , Humanos , Viabilidade Microbiana , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Deleção de Sequência , Inoculações Seriadas
11.
Scand J Gastroenterol ; 44(11): 1332-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19891584

RESUMO

OBJECTIVE. miR-122 is highly abundant in liver and a hepato-specific microRNA. There is evidence to show that miR-122 expression is down-regulated in human hepatocellular carcinoma (HCC). It is not known whether miR-122 affects the cellular behavior of hepatoma cells. The aim of this study was to investigate the effects of miR-122 on the viability and apoptosis of hepatoma cells. MATERIAL AND METHODS. The viability and apoptosis of Huh-7 and HepG2 cells treated with miR-122 or miR-122 antisense RNA (anti-miR-122) were analyzed by adenosine triphosphate (ATP)-based luminescent assay, annexin V-based flow cytometry, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) detection. The miR-122 coding genes in both cell lines were sequenced. RESULTS. Although two putative promoter sequences for the miR-122 gene at 18q21.31 were detected, the miR-122 coding sequence was missing in HepG2 cells, which might be the reason for the absence of miR-122 expression. There was no significant difference between the viabilities of HepG2 cells transfected with miR-122 and mock HepG2 cells (p >0.05). However, the viability of Huh-7 transfected with anti-miR-122 was significantly elevated at 24, 36, and 48 h posttransfection compared with that of mock cells (p <0.01). Both the flow cytometry and TUNEL assay showed that the apoptotic level of Huh-7 transfected with anti-miR-122 was significantly decreased at 48 h posttransfection (p <0.01). CONCLUSIONS. miR-122 down-regulated the viability but up-regulated the apoptosis of hepatoma cell Huh-7. The absence of miR-122 expression in HepG2 cells was due to the loss of the miR-122 coding sequence in chromosome 18. These results imply that aberrant expression of miR-122 may contribute to hepatocarcinogenesis.


Assuntos
Apoptose/genética , Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , MicroRNAs/genética , RNA Neoplásico/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Citometria de Fluxo , Humanos , Marcação In Situ das Extremidades Cortadas , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , MicroRNAs/biossíntese , RNA Neoplásico/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Virus Res ; 135(2): 255-9, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18514346

RESUMO

Two mutants of coxsackievirus B1 (CVB1), CVB1c and CVB1e, with mutations in the stem-loop H of 5'-UTR were generated by site-directed mutagenesis. The A at nt579 of CVB1c was substituted by G. The U at nt573 and A at nt579 of CVB1e were substituted by A and G. The virulences of these mutants had been assessed by means of cytopathic effect (CPE), plaque formation, one-step growth curve, and 50% lethal dose (LD50) assays. The pathogenesis of these mutants was evaluated by attacking suckling Balb/c mice. Plaque assay and one-step growth curve showed that the replication of CVB1c and CVB1e on HeLa cells was significantly faster than that of their prototype CVB1n. Data of CPE assay, LD50, and pathological examination showed that CVB1c and CVB1e were more virulent than CVB1n. These data showed that mutation at nt579 (A-->G) alone and mutations at nt579 (A-->G) and nt573 (U-->A) together within 5'-UTR caused significant augment of the virulence and pathogenesis of coxsackievirus B1, and suggested that nt573 and nt579 might be molecular determinants for the virulence of coxsackievirus B1.


Assuntos
Regiões 5' não Traduzidas/genética , Enterovirus Humano B/genética , Enterovirus Humano B/patogenicidade , Mutação , Regiões 5' não Traduzidas/química , Animais , Animais Lactentes , Sequência de Bases , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Virulência
13.
Zhonghua Yu Fang Yi Xue Za Zhi ; 42(11): 831-5, 2008 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-19176145

RESUMO

OBJECTIVE: To develop and evaluate the efficiency of air purification and sterilization instrument based on nano-sized TiO(2) photocatalytic technique. METHODS: The nano-sized TiO(2) photocatalytic air purification and sterilization instrument was designed and a sample had been prepared. The sterilization efficiencies for E.coli and Klebsiella by the nano-sized TiO(2) photocatalytic instrument and ultraviolet (UV) were measured in closed labs. The on-site efficiency of the instrument was evaluated, too. RESULTS: The nano-sized TiO(2) photocatalytic air purification and sterilization instrument was composed of five units: rough filter, nano-sized TiO(2) photocatalytic unit, activated carbon fiber filter, negative ion generator, and programmed control unit. The E.coli killing rates by the nano-sized TiO(2) photocatalytic instrument were 76.0%, 81.8%, 77.5%, and 80.7% at 30, 60, 90, and 120 minutes, respectively. There was no significant difference between the E.coli killing rates of the instrument and UV (P > 0.05), except the 120 minutes timepoint. The Klebsiella killing rates by the instrument were 78.4%, 79.5%, 67.3%, and 58.5% at 30, 60, 90, and 120 minutes, respectively. The Klebsiella killing efficiencies of the instrument at 30 and 60 minutes were better than that of UV (P < 0.01). There was no significant difference between the Klebsiella killing efficiencies of the instrument and UV (P > 0.05). CONCLUSION: The air sterilization efficiency of the nano-sized TiO(2) photocatalytic instrument should be equivalent or better as compared with the UV. This instrument might be used for the air purification and sterilization of the public locations.


Assuntos
Poluição do Ar/prevenção & controle , Descontaminação/métodos , Desinfecção/métodos , Nanoestruturas , Fotoquímica , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA