Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Bone ; 183: 117074, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38513307

RESUMO

BACKGROUND: Steroid-induced osteonecrosis of the femoral head (SONFH) is a prevalent and incapacitating condition that affects the hip joint. Unfortunately, early diagnostic and treatment measures are limited. METHODS: Our study employed Tandem Mass Tag (TMT) labeling mass spectrometry (MS)-based quantitative proteome to compare the proteins of femoral head tissues in patients with SONFH with those of patients who sustained femoral neck fracture (FNF). We investigated the level and effects of glucose transporter member 1 (GLUT1) in SONFH patients and MC3T3-E1 cells and examined the function and molecular mechanism of GLUT1 in the context of SONFH using in vivo and in vitro approaches. RESULTS: The SONFH group exhibited significant changes in protein expression levels compared to the fracture group. Specifically, we observed the up-regulation of 86 proteins and the down-regulation of 138 proteins in the SONFH group. Among the differentially expressed proteins, GLUT1 was down-regulated and associated with glucose metabolic processes in the SONFH group. Further analysis using Parallel Reaction Monitoring (PRM), WB, and PCR confirmed that the protein was significantly down-regulated in both femoral head tissue samples from SONFH patients and dexamethasone-treated MC3T3-E1 cells. Moreover, overexpression of GLUT1 effectively reduced glucocorticoid (GC)-induced apoptosis and the suppression of osteoblast proliferation and osteogenic differentiation in MC3T3-E1 cells, as well as GC-induced femoral head destruction in GC-induced ONFH rat models. Additionally, our research demonstrated that GC down-regulated GLUT1 transcription via glucocorticoid receptors in MC3T3-E1 cells. CONCLUSIONS: GLUT1 was down-regulated in patients with SONFH; furthermore, down-regulated GLUT1 promoted apoptosis and inhibited osteoblast ossification in dexamethasone-induced MC3T3-E1 cells and contributed to GC-induced femoral head destruction in a SONFH rat model. Glucocorticoids inhibited the transcriptional activity of GLUT1, leading to a reduction in the amount and activity of GLUT1 in the cells and ultimately promoting apoptosis and inhibiting osteoblast ossification via the GC/GR/GLUT1 axis in SONFH.


Assuntos
Necrose da Cabeça do Fêmur , Glucocorticoides , Osteonecrose , Animais , Humanos , Ratos , Dexametasona , Cabeça do Fêmur/metabolismo , Cabeça do Fêmur/patologia , Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/metabolismo , Necrose da Cabeça do Fêmur/patologia , Glucocorticoides/efeitos adversos , Transportador de Glucose Tipo 1/metabolismo , Osteogênese , Osteonecrose/induzido quimicamente , Proteômica , Esteroides/efeitos adversos
2.
Cureus ; 15(8): e42985, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37671209

RESUMO

Background Basal, reflex, and emotional tears differ in chemical components. It is not yet known whether chemical differences exist in tears of different emotions. We investigated the biochemical basis of emotional tears by performing non-targeted metabolomics analyses of positive and negative emotional tears of humans. Methods Samples of reflex, negative, and positive emotional tears were obtained from 12 healthy college participants (11 females and one male). Untargeted metabolomics was performed to identify metabolites in different types of tears. The differentially altered metabolites were screened and assessed using univariate and multivariate analyses. Results The orthogonal partial least squares discriminant analysis model showed that reflex, negative, and positive emotional tears were clearly separated. A total of 133 significantly differentially expressed metabolites of electrospray ionization source (ESI-) mode were identified between negative and positive emotional tears. The top 50 differentially expressed metabolites between negative and positive emotional tears were highly correlated. Pathway analysis revealed that secretion of negative emotional tears was associated with some synapses in the brain, regulation of a series of endocrine hormones, including the estrogen signaling pathway, and inflammation activities, while secretion of positive emotional tears was correlated with biotin and caffeine metabolism. Conclusions It is indicated that metabolic profiles of reflex, positive, and negative emotional tears of humans are distinct, and secretion of the tears involves distinct biological activities. Therefore, we present a chemical method for detecting human emotions, which may become a powerful tool for the diagnosis of mental diseases and the identification of fake tears.

3.
Int Immunopharmacol ; 124(Pt A): 110938, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37713782

RESUMO

BACKGROUND: N6-methyladenosine (m6A) is a highly enriched modification found in circular RNAs (CircRNAs); however, the ability and mechanism of CircRNAs to encode for m6A function in rheumatoid arthritis (RA) remain poorly understood. METHODS: We utilized an epitranscriptomic microarray to measure levels and quantities of m6A methylated CircRNAs in synovial tissues of patients with RA and osteoarthritis (OA). We then utilized methylated RNA immunoprecipitation- and MazF-quantitative PCR to identify and validate differentially m6A-methylated RNAs between the groups, conducted a functional enrichment analysis, and selected protein-protein interaction hub genes. Lastly, we predicted and validated the CircRNA/miRNA/mRNA interaction networks. RESULTS: We detected 4,845 CircRNAs containing m6A in our samples, with 53 CircRNAs upregulated, and 139 CircRNAs downregulated compared to human OA synovial tissue (|fold change| ≥ 1.2 and p ≤ 0.05). The differentially m6A-modified CircRNAs were associated with the interleukin-6-mediated signaling pathway, with an increase in relative m6A-methylated levels of hsa_circ_0007259 in human RA, a significant decrease in hsa_miR-21-5p, and an increase in signal transducer and activator of transcription 3(STAT3). The Luciferase Reporter Gene assay verified the binding of hsa_circ_0007259 to hsa_miR-21-5p and the subsequent binding of hsa_miR-21-5p to STAT3. CONCLUSION: We showed a notable increase in the relative m6A-methylated levels of hsa_circ_0007259 in human RA, indicating a potential role of hypermethylated hsa_circ_0007259 in RA pathogenesis. This may provide valuable insight into the mechanism of RA and the possibility of utilizing hsa_circ_0007259 as a valuable biomarker.

4.
Cell Death Discov ; 8(1): 226, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468879

RESUMO

Mesenchymal stem cell (MSC)-derived exosomes (Exos) enhanced new bone formation, coupled with positive effects on osteogenesis and angiogenesis. This study aims to define the role of microRNA (miR)-21-5p delivered by human umbilical MSC-derived Exos (hucMSC-Exos) in the osteonecrosis of the femoral head (ONFH). We first validated that miR-21-5p expression was downregulated in the cartilage tissues of ONFH patients. Besides, hucMSCs delivered miR-21-5p to hFOB1.19 cells and human umbilical vein endothelial cells (HUVECs) through the secreted Exos. Loss- and gain-of-function approaches were performed to clarify the effects of Exo-miR-21-5p, SOX5, and EZH2 on HUVEC angiogenesis and hFOB1.19 cell osteogenesis. It was established that Exo-miR-21-5p augments HUVEC angiogenesis and hFOB1.19 cell osteogenesis in vitro, as reflected by elevated alkaline phosphatase (ALP) activity and calcium deposition, and increased the expression of osteogenesis-related markers OCN, Runx2 and Collagen I. Mechanistically, miR-21-5p targeted SOX5 and negatively regulated its expression, while SOX5 subsequently promoted the transcription of EZH2. Ectopically expressed SOX5 or EZH2 could counterweigh the effect of Exo-miR-21-5p. Further, hucMSC-Exos containing miR-21-5p repressed the expression of SOX5 and EZH2 and augmented angiogenesis and osteogenesis in vivo. Altogether, our study uncovered the role of miR-21-5p shuttled by hucMSC-Exos, in promoting angiogenesis and osteogenesis, which may be a potential therapeutic target for ONFH.

5.
J Biomed Nanotechnol ; 18(1): 225-233, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35180916

RESUMO

We transplanted RADA16-PRG self-assembled nanopeptide scaffolds (SAPNSs), bone mesenchymal stem cells (BMSCs), and a brain-derived neurotrophic factor (BDNF)-expressing adeno-associated virus (AAV) into rats subjected to acute spinal cord injury (SCI) to investigate the effects of these transplantations on acute SCI repair and explore their mechanisms. Forty-eight SCI rats were randomly divided into four groups: BBR, BR, B, and NC groups. Seven and 28 days after SCI, evoked potentials (EPs) and BBB scores were assessed to evaluate the recovery of rats' motor behavior and sensory function after injury. HE and toluidine blue staining were performed to investigate the histological structure of the spinal cord tissue of rats from each group, and immunofluorescence staining was used to observe the red fluorescent protein (RFP) intensity of BMSCs and glial fibrillary acidic protein (GFAP) and neurofilament (NF) in the damaged area in each group. RT-PCR was utilized to detect the expression levels of the BDNF, GFAP, and neuron-specific enolase (NSE) genes in the injured area in each group. The results showed that cotransplantation of RADA16-PRG-SAPNs, BMSCs, and BDNF-AVV promoted the spinal cord's motor and sensory function of SCI rats; increased levels of BMSCs, inhabited glial cells proliferation, and promoted neurons proliferations in the injured area; and increased NF, BDNF, and NSE levels and decreased its GFAP in the injured area. Thus, cotransplantation of RADA16-PRG-SAPNS, BMSCs, and BDNF-AAV can prolong the survival time of BMSCs in rats, reduce the postoperative scarring caused by glial proliferation, and promote the migration and proliferation of neurons in the injured area, resulting in the promotion of functional repair after acute SCI.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Traumatismos da Medula Espinal , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dependovirus/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Medula Espinal/metabolismo , Medula Espinal/patologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA