Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(5)2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38793556

RESUMO

Yunnan province in China shares its borders with three neighboring countries: Myanmar, Vietnam, and Laos. The region is characterized by a diverse climate and is known to be a suitable habitat for various arthropods, including midges which are notorious for transmitting diseases which pose significant health burdens affecting both human and animal health. A total of 431,100 midges were collected from 15 different locations in the border region of Yunnan province from 2015 to 2020. These midges were divided into 37 groups according to the collection year and sampling site. These 37 groups of midges were then homogenized to extract nucleic acid. Metatranscriptomics were used to analyze their viromes. Based on the obtained cytochrome C oxidase I gene (COI) sequences, three genera were identified, including one species of Forcipomyia, one species of Dasyhelea, and twenty-five species of Culicoides. We identified a total of 3199 viruses in five orders and 12 families, including 1305 single-stranded positive-stranded RNA viruses (+ssRNA) in two orders and seven families, 175 single-stranded negative-stranded RNA viruses (-ssRNA) in two orders and one family, and 1719 double-stranded RNA viruses in five families. Six arboviruses of economic importance were identified, namely Banna virus (BAV), Japanese encephalitis virus (JEV), Akabane virus (AKV), Bluetongue virus (BTV), Tibetan circovirus (TIBOV), and Epizootic hemorrhagic disease virus (EHDV), all of which are capable, to varying extents, of causing disease in humans and/or animals. The survey sites in this study basically covered the current distribution area of midges in Yunnan province, which helps to predict the geographic expansion of midge species. The complexity and diversity of the viral spectrum carried by midges identified in the study calls for more in-depth research, which can be utilized to monitor arthropod vectors and to predict the emergence and spread of zoonoses and animal epidemics, which is of great significance for the control of vector-borne diseases.


Assuntos
Ceratopogonidae , Filogenia , Animais , China , Ceratopogonidae/virologia , Ceratopogonidae/genética , Vírus de RNA/genética , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , Transcriptoma , Insetos Vetores/virologia , Viroma/genética , Humanos
2.
Nat Ecol Evol ; 8(5): 947-959, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38519631

RESUMO

Mosquito transmitted viruses are responsible for an increasing burden of human disease. Despite this, little is known about the diversity and ecology of viruses within individual mosquito hosts. Here, using a meta-transcriptomic approach, we determined the viromes of 2,438 individual mosquitoes (81 species), spanning ~4,000 km along latitudes and longitudes in China. From these data we identified 393 viral species associated with mosquitoes, including 7 (putative) species of arthropod-borne viruses (that is, arboviruses). We identified potential mosquito species and geographic hotspots of viral diversity and arbovirus occurrence, and demonstrated that the composition of individual mosquito viromes was strongly associated with host phylogeny. Our data revealed a large number of viruses shared among mosquito species or genera, enhancing our understanding of the host specificity of insect-associated viruses. We also detected multiple virus species that were widespread throughout the country, perhaps reflecting long-distance mosquito dispersal. Together, these results greatly expand the known mosquito virome, linked viral diversity at the scale of individual insects to that at a country-wide scale, and offered unique insights into the biogeography and diversity of viruses in insect vectors.


Assuntos
Culicidae , Mosquitos Vetores , Viroma , Animais , Culicidae/virologia , China , Mosquitos Vetores/virologia , Metagenômica , Arbovírus/genética , Arbovírus/classificação , Filogenia , Biodiversidade
3.
Pathogens ; 13(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38535561

RESUMO

Between 7 December 2022 and 28 February 2023, China experienced a new wave of COVID-19 that swept across the entire country and resulted in an increasing amount of respiratory infections and hospitalizations. The purpose of this study is to reveal the intensity and composition of coinfecting microbial agents. In total, 196 inpatients were recruited from The Third People's Hospital of Shenzhen, and 169 respiratory and 73 blood samples were collected for metagenomic next-generation sequencing. The total "Infectome" was characterized and compared across different groups defined by the SARS-CoV-2 detection status, age groups, and severity of disease. Our results revealed a total of 22 species of pathogenic microbes (4 viruses, 13 bacteria, and 5 fungi), and more were discovered in the respiratory tract than in blood. The diversity of the total infectome was highly distinguished between respiratory and blood samples, and it was generally higher in patients that were SARS-CoV-2-positive, older in age, and with more severe disease. At the individual pathogen level, HSV-1 seemed to be the major contributor to these differences observed in the overall comparisons. Collectively, this study reveals the highly complex respiratory infectome and high-intensity coinfection in patients admitted to the hospital during the period of the 2023 COVID-19 pandemic in China.

4.
J Infect ; 88(3): 106118, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342382

RESUMO

OBJECTIVES: The respiratory tract is the portal of entry for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although a variety of respiratory pathogens other than SARS-CoV-2 have been associated with severe cases of COVID-19 disease, the dynamics of the upper respiratory microbiota during disease the course of disease, and how they impact disease manifestation, remain uncertain. METHODS: We collected 349 longitudinal upper respiratory samples from a cohort of 65 COVID-19 patients (cohort 1), 28 samples from 28 recovered COVID-19 patients (cohort 2), and 59 samples from 59 healthy controls (cohort 3). All COVID-19 patients originated from the earliest stage of the epidemic in Wuhan. Based on a modified clinical scale, the disease course was divided into five clinical disease phases (pseudotimes): "Healthy" (pseudotime 0), "Incremental" (pseudotime 1), "Critical" (pseudotime 2), "Complicated" (pseudotime 3), "Convalescent" (pseudotime 4), and "Long-term follow-up" (pseudotime 5). Using meta-transcriptomics, we investigated the features and dynamics of transcriptionally active microbes in the upper respiratory tract (URT) over the course of COVID-19 disease, as well as its association with disease progression and clinical outcomes. RESULTS: Our results revealed that the URT microbiome exhibits substantial heterogeneity during disease course. Two clusters of microbial communities characterized by low alpha diversity and enrichment for multiple pathogens or potential pathobionts (including Acinetobacter and Candida) were associated with disease progression and a worse clinical outcome. We also identified a series of microbial indicators that classified disease progression into more severe stages. Longitudinal analysis revealed that although the microbiome exhibited complex and changing patterns during COVID-19, a restoration of URT microbiomes from early dysbiosis toward more diverse status in later disease stages was observed in most patients. In addition, a group of potential pathobionts were strongly associated with the concentration of inflammatory indicators and mortality. CONCLUSION: This study revealed strong links between URT microbiome dynamics and disease progression and clinical outcomes in COVID-19, implying that the treatment of severe disease should consider the full spectrum of microbial pathogens present.


Assuntos
COVID-19 , Microbiota , Humanos , SARS-CoV-2 , Nariz , Progressão da Doença
5.
Opt Express ; 31(24): 40952-40968, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38041383

RESUMO

Traditional optical design methods require designer intervention in the system's evolution from the starting point to the final design. Trial-and-error during design optimization improves system performance step by step but requires much time and effort. A new optical design framework, end-to-end fast automatic design, is proposed and achieved for the freeform reflective optics in this paper, which promotes a new optical design mode. Compared with the traditional mode through improving performance after each trial, an optical system with good image quality can be directly obtained in the end-to-end design process with simple input and no human involvement within a short time. If there is still the possibility for performance improvement of the obtained system, the designer can vary the input parameters repeatedly to obtain multiple systems with good image quality. Finally, the desired system is selected from these systems. Compared with the step-by-step trials in traditional optimization, this new optical design mode involves high-speed trials of the end-to-end automatic design process, reducing the dependence on experience and skill. In this paper, an end-to-end fast automatic design method for freeform imaging systems is developed based on a new design route. Using an initial plane system as an input, a freeform system with excellent image quality can be designed automatically within 1-2 min. After several trials of the end-to-end fast design process, three high-performance freeform systems are designed successfully that consider volume control, beam obscuration, and mirror interference.

6.
Virus Evol ; 9(2): vead060, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868933

RESUMO

Since 2018, the outbreaks of genotype II African swine fever virus (ASFV) in China and several eastern Asian countries have caused a huge impact on the local swine industry, resulting in huge economic losses. However, little is known about the origin, genomic diversity, evolutionary features, and epidemiological history of the genotype II ASFV. Here, 14 high-quality complete genomes of ASFVs were generated via sequencing of samples collected from China over the course of 3 years, followed by phylogenetic and phylodynamic analyses. The strains identified were relatively homogeneous, with a total of 52 SNPs and 11 indels compared with the prototype strain HLJ/2018, among which there were four exceptionally large deletions (620-18,023 nt). Evolutionary analyses revealed that ASFV strains distributed in eastern Asia formed a monophyly and a 'star-like' structure centered around the prototype strain, suggesting a single origin. Additionally, phylogenetic network analysis and ancestral reconstruction of geographic state indicated that genotype II ASFV strains in eastern Asia likely originated from Western Europe. Overall, these results contribute to the understanding of the history and current status of genotype II ASFV strains in eastern Asian, which could be of considerable importance in disease control and prevention.

7.
bioRxiv ; 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37732272

RESUMO

Mosquito transmitted viruses are responsible for an increasing burden of human disease. Despite this, little is known about the diversity and ecology of viruses within individual mosquito hosts. Using a meta-transcriptomic approach, we analysed the virome of 2,438 individual mosquitos (79 species), spanning ~4000 km along latitudes and longitudes in China. From these data we identified 393 core viral species associated with mosquitos, including seven (putative) arbovirus species. We identified potential species and geographic hotspots of viral richness and arbovirus occurrence, and demonstrated that host phylogeny had a strong impact on the composition of individual mosquito viromes. Our data revealed a large number of viruses shared among mosquito species or genera, expanding our knowledge of host specificity of insect-associated viruses. We also detected multiple virus species that were widespread throughout the country, possibly facilitated by long-distance mosquito migrations. Together, our results greatly expand the known mosquito virome, linked the viral diversity at the scale of individual insects to that at a country-wide scale, and offered unique insights into the ecology of viruses of insect vectors.

8.
Nat Commun ; 14(1): 4079, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429936

RESUMO

Bats are reservoir hosts for many zoonotic viruses. Despite this, relatively little is known about the diversity and abundance of viruses within individual bats, and hence the frequency of virus co-infection and spillover among them. We characterize the mammal-associated viruses in 149 individual bats sampled from Yunnan province, China, using an unbiased meta-transcriptomics approach. This reveals a high frequency of virus co-infection (simultaneous infection of bat individuals by multiple viral species) and spillover among the animals studied, which may in turn facilitate virus recombination and reassortment. Of note, we identify five viral species that are likely to be pathogenic to humans or livestock, based on phylogenetic relatedness to known pathogens or in vitro receptor binding assays. This includes a novel recombinant SARS-like coronavirus that is closely related to both SARS-CoV and SARS-CoV-2. In vitro assays indicate that this recombinant virus can utilize the human ACE2 receptor such that it is likely to be of increased emergence risk. Our study highlights the common occurrence of co-infection and spillover of bat viruses and their implications for virus emergence.


Assuntos
COVID-19 , Quirópteros , Coinfecção , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Animais , Humanos , Filogenia , SARS-CoV-2 , Viroma , China/epidemiologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética
9.
Microbiol Spectr ; 11(4): e0512222, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37306586

RESUMO

Nelson Bay reovirus (NBV) is an emerging zoonotic virus that can cause acute respiratory disease in humans. These viruses are mainly discovered in Oceania, Africa, and Asia, and bats have been identified as their main animal reservoir. However, despite recent expansion of diversity for NBVs, the transmission dynamics and evolutionary history of NBVs are still unclear. This study successfully isolated two NBV strains (MLBC1302 and MLBC1313) from blood-sucking bat fly specimens (Eucampsipoda sundaica) and one (WDBP1716) from the spleen specimen of a fruit bat (Rousettus leschenaultii), which were collected at the China-Myanmar border area of Yunnan Province. Syncytia cytopathic effects (CPE) were observed in BHK-21 and Vero E6 cells infected with the three strains at 48 h postinfection. Electron micrographs of ultrathin sections showed numerous spherical virions with a diameter of approximately 70 nm in the cytoplasm of infected cells. The complete genome nucleotide sequence of the viruses was determined by metatranscriptomic sequencing of infected cells. Phylogenetic analysis demonstrated that the novel strains were closely related to Cangyuan orthoreovirus, Melaka orthoreovirus, and human-infecting Pteropine orthoreovirus HK23629/07. Simplot analysis revealed the strains originated from complex genomic reassortment among different NBVs, suggesting the viruses experienced a high reassortment rate. In addition, strains successfully isolated from bat flies also implied that blood-sucking arthropods might serve as potential transmission vectors. IMPORTANCE Bats are the reservoir of many viral pathogens with strong pathogenicity, including NBVs. Nevertheless, it is unclear whether arthropod vectors are involved in transmitting NBVs. In this study, we successfully isolated two NBV strains from bat flies collected from the body surface of bats, which implies that they may be vectors for virus transmission between bats. While the potential threat to humans remains to be determined, evolutionary analyses involving different segments revealed that the novel strains had complex reassortment histories, with S1, S2, and M1 segments highly similar to human pathogens. Further experiments are required to determine whether more NBVs are vectored by bat flies, their potential threat to humans, and transmission dynamics.


Assuntos
Artrópodes , Orthoreovirus , Animais , Humanos , China , Genoma Viral , Orthoreovirus/genética , Filogenia
10.
Viruses ; 15(6)2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37376637

RESUMO

Cats harbor many important viral pathogens, and the knowledge of their diversity has been greatly expanded thanks to increasingly popular molecular sequencing techniques. While the diversity is mostly described in numerous regionally defined studies, there lacks a global overview of the diversity for the majority of cat viruses, and therefore our understanding of the evolution and epidemiology of these viruses was generally inadequate. In this study, we analyzed 12,377 genetic sequences from 25 cat virus species and conducted comprehensive phylodynamic analyses. It revealed, for the first time, the global diversity for all cat viruses known to date, taking into account highly virulent strains and vaccine strains. From there, we further characterized and compared the geographic expansion patterns, temporal dynamics and recombination frequencies of these viruses. While respiratory pathogens such as feline calicivirus showed some degree of geographical panmixes, the other viral species are more geographically defined. Furthermore, recombination rates were much higher in feline parvovirus, feline coronavirus, feline calicivirus and feline foamy virus than the other feline virus species. Collectively, our findings deepen the understanding of the evolutionary and epidemiological features of cat viruses, which in turn provide important insight into the prevention and control of cat pathogens.


Assuntos
Calicivirus Felino , Doenças do Gato , Animais , Gatos , Calicivirus Felino/genética , Doenças do Gato/epidemiologia , Vírus da Panleucopenia Felina , Variação Genética
11.
Front Cell Infect Microbiol ; 13: 1283019, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38179426

RESUMO

Ticks, an arthropod known for transmitting various pathogens such as viruses, bacteria, and fungi, pose a perpetual public health concern. A total of 2,570 ticks collected from Nujiang Prefecture in Yunnan Province between 2017 and 2022 were included in the study. Through the meta-transcriptomic sequencing of four locally distributed tick species, we identified 13 RNA viruses belonging to eight viral families, namely, Phenuiviridae, Nairoviridae, Peribunyaviridae, Flaviviridae, Chuviridae, Rhabdoviridae, Orthomyxoviridae, and Totiviridae. The most prevalent viruses were members of the order Bunyavirales, including three of Phenuiviridae, two were classified as Peribunyaviridae, and one was associated with Nairoviridae. However, whether they pose a threat to human health still remains unclear. Indeed, this study revealed the genetic diversity of tick species and tick-borne viruses in Nujiang Prefecture based on COI gene and tick-borne virus research. These data clarified the genetic evolution of some RNA viruses and furthered our understanding of the distribution pattern of tick-borne pathogens, highlighting the importance and necessity of monitoring tick-borne pathogens.


Assuntos
Vírus de RNA , Carrapatos , Vírus , Animais , Humanos , China , Vírus/genética , Vírus de RNA/genética , Perfilação da Expressão Gênica
12.
bioRxiv ; 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36451889

RESUMO

Bats are reservoir hosts for many zoonotic viruses. Despite this, relatively little is known about the diversity and abundance of viruses within bats at the level of individual animals, and hence the frequency of virus co-infection and inter-species transmission. Using an unbiased meta-transcriptomics approach we characterised the mammalian associated viruses present in 149 individual bats sampled from Yunnan province, China. This revealed a high frequency of virus co-infection and species spillover among the animals studied, with 12 viruses shared among different bat species, which in turn facilitates virus recombination and reassortment. Of note, we identified five viral species that are likely to be pathogenic to humans or livestock, including a novel recombinant SARS-like coronavirus that is closely related to both SARS-CoV-2 and SARS-CoV, with only five amino acid differences between its receptor-binding domain sequence and that of the earliest sequences of SARS-CoV-2. Functional analysis predicts that this recombinant coronavirus can utilize the human ACE2 receptor such that it is likely to be of high zoonotic risk. Our study highlights the common occurrence of inter-species transmission and co-infection of bat viruses, as well as their implications for virus emergence.

13.
Nat Microbiol ; 7(8): 1259-1269, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35918420

RESUMO

Pangolins are the most trafficked wild animal in the world according to the World Wildlife Fund. The discovery of SARS-CoV-2-related coronaviruses in Malayan pangolins has piqued interest in the viromes of these wild, scaly-skinned mammals. We sequenced the viromes of 161 pangolins that were smuggled into China and assembled 28 vertebrate-associated viruses, 21 of which have not been previously reported in vertebrates. We named 16 members of Hunnivirus, Pestivirus and Copiparvovirus pangolin-associated viruses. We report that the L-protein has been lost from all hunniviruses identified in pangolins. Sequences of four human-associated viruses were detected in pangolin viromes, including respiratory syncytial virus, Orthopneumovirus, Rotavirus A and Mammalian orthoreovirus. The genomic sequences of five mammal-associated and three tick-associated viruses were also present. Notably, a coronavirus related to HKU4-CoV, which was originally found in bats, was identified. The presence of these viruses in smuggled pangolins identifies these mammals as a potential source of emergent pathogenic viruses.


Assuntos
COVID-19 , Quirópteros , Animais , Humanos , Mamíferos , Pangolins , SARS-CoV-2/genética
14.
Microbiome ; 10(1): 73, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538563

RESUMO

BACKGROUND: The global pork industry is continuously affected by infectious diseases that can result in large-scale mortality, trade restrictions, and major reductions in production. Nevertheless, the cause of many infectious diseases in pigs remains unclear, largely because commonly used diagnostic tools fail to capture the full diversity of potential pathogens and because pathogen co-infection is common. RESULTS: We used a meta-transcriptomic approach to systematically characterize the pathogens in 136 clinical cases representing different disease syndromes in pigs, as well as in 12 non-diseased controls. This enabled us to simultaneously determine the diversity, abundance, genomic information, and detailed epidemiological history of a wide range of potential pathogens. We identified 34 species of RNA viruses, nine species of DNA viruses, seven species of bacteria, and three species of fungi, including two novel divergent members of the genus Pneumocystis. While most of these pathogens were only apparent in diseased animals or were at higher abundance in diseased animals than in healthy animals, others were present in healthy controls, suggesting opportunistic infections. Importantly, most of the cases examined here were characterized by co-infection with more than two species of viral, bacterial, or fungal pathogens, some with highly correlated occurrence and abundance levels. Examination of clinical signs and necropsy results in the context of relevant pathogens revealed that a multiple-pathogen model was better associated with the data than a single-pathogen model was. CONCLUSIONS: Our data demonstrate that most of the pig diseases examined were better explained by the presence of multiple rather than single pathogens and that infection with one pathogen can facilitate infection or increase the prevalence/abundance of another. Consequently, it is generally preferable to consider the cause of a disease based on a panel of co-infecting pathogens rather than on individual infectious agents. Video abstract.


Assuntos
Coinfecção , Doenças Transmissíveis , Vírus de RNA , Animais , Bactérias/genética , Vírus de DNA , Suínos
15.
Plant J ; 111(3): 625-641, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35608125

RESUMO

Ribonucleotide reductases (RNRs) are essential enzymes in DNA synthesis. However, little is known about the RNRs in plants. Here, we identified a svstl1 mutant from the self-created ethyl methanesulfonate (EMS) mutant library of Setaria viridis. The mutant leaves exhibited a bleaching phenotype at the heading stage. Paraffin section analysis showed the destruction of the C4 Kranz anatomy. Transmission electron microscopy results further demonstrated the severely disturbed development of some chloroplasts. MutMap analysis revealed that the SvSTL1 gene is the primary candidate, encoding a large subunit of RNRs. Complementation experiments confirmed that SvSTL1 is responsible for the phenotype of svstl1. There are two additional RNR large subunit homologs in S. viridis, SvSTL2 and SvSTL3. To further understand the functions of these three RNR large subunit genes, a series of mutants were generated via CRISPR/Cas9 technology. In striking contrast to the finding that all three SvSTLs interact with the RNR small subunit, the phenotype varied along with the copies of chloroplast genome among different svstl single mutants: the svstl1 mutant exhibited pronounced chloroplast development and significantly fewer copies of the chloroplast genome than the svstl2 or svstl3 single mutants. These results suggested that SvSTL1 plays a major role in the optimal function of RNRs and is essential for chloroplast development. Furthermore, through the analysis of double and triple mutants, the study provides new insights into the finely tuned coordination among SvSTLs to maintain normal chloroplast development in the emerging C4 model plant S. viridis.


Assuntos
Genoma de Cloroplastos , Ribonucleotídeo Redutases , Setaria (Planta) , Cloroplastos , Folhas de Planta/genética , Ribonucleotídeo Redutases/genética , Setaria (Planta)/genética
16.
JMIR Public Health Surveill ; 8(4): e32411, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35377316

RESUMO

BACKGROUND: COVID-19 is an ongoing global pandemic caused by SARS-CoV-2. As of June 2021, 5 emergency vaccines were available for COVID-19 prevention, and with the improvement of vaccination rates and the resumption of activities in each country, verification of vaccination has become an important issue. Currently, in most areas, vaccination and reverse transcription polymerase chain reaction (RT-PCR) test results are certified and validated on paper. This leads to the problem of counterfeit documents. Therefore, a global vaccination record is needed. OBJECTIVE: The main objective of this study is to design a vaccine passport (VP) validation system based on a general blockchain architecture for international use in a simulated environment. With decentralized characteristics, the system is expected to have the advantages of low cost, high interoperability, effectiveness, security, and verifiability through blockchain architecture. METHODS: The blockchain decentralized mechanism was used to build an open and anticounterfeiting information platform for VPs. The contents of a vaccination card are recorded according to international Fast Healthcare Interoperability Resource (FHIR) standards, and blockchain smart contracts (SCs) are used for authorization and authentication to achieve hierarchical management of various international hospitals and people receiving injections. The blockchain stores an encrypted vaccination path managed by the user who manages the private key. The blockchain uses the proof-of-authority (PoA) public chain and can access all information through the specified chain. This will achieve the goal of keeping development costs low and streamlining vaccine transit management so that countries in different economies can use them. RESULTS: The openness of the blockchain helps to create transparency and data accuracy. This blockchain architecture contains a total of 3 entities. All approvals are published on Open Ledger. Smart certificates enable authorization and authentication, and encryption and decryption mechanisms guarantee data protection. This proof of concept demonstrates the design of blockchain architecture, which can achieve accurate global VP verification at an affordable price. In this study, an actual VP case was established and demonstrated. An open blockchain, an individually approved certification mechanism, and an international standard vaccination record were introduced. CONCLUSIONS: Blockchain architecture can be used to build a viable international VP authentication process with the advantages of low cost, high interoperability, effectiveness, security, and verifiability.


Assuntos
Blockchain , COVID-19 , Vacinas , COVID-19/epidemiologia , COVID-19/prevenção & controle , Segurança Computacional , Humanos , SARS-CoV-2
17.
Virus Evol ; 8(1): veac006, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242359

RESUMO

Although metagenomic sequencing has revealed high numbers of viruses in mosquitoes sampled globally, our understanding of how their diversity and abundance varies in time and space as well as by host species and gender remains unclear. To address this, we collected 23,109 mosquitoes over the course of 12 months from a bat-dwelling cave and a nearby village in Yunnan province, China. These samples were organized by mosquito species, mosquito gender, and sampling time for meta-transcriptomic sequencing. A total of 162 eukaryotic virus species were identified, of which 101 were novel, including representatives of seventeen RNA virus multi-family supergroups and four species of DNA virus from the families Parvoviridae, Circoviridae, and Nudiviridae. In addition, two known vector-borne viruses-Japanese encephalitis virus and Banna virus-were found. Analyses of the entire virome revealed strikingly different viral compositions and abundance levels in warmer compared to colder months, a strong host structure at the level of mosquito species, and no substantial differences between those viruses harbored by male and female mosquitoes. At the scale of individual viruses, some were found to be ubiquitous throughout the year and across four mosquito species, while most of the other viruses were season and/or host specific. Collectively, this study reveals the diversity, dynamics, and evolution of the mosquito virome at a single location and sheds new lights on the ecology of these important vector animals.

18.
J Thorac Dis ; 14(2): 355-370, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35280492

RESUMO

Background: The current COVID-19 pandemic is posing a major challenge to public health on a global scale. While it is generally believed that severe COVID-19 results from over-expression of inflammatory mediators (i.e., a "cytokine storm"), it is still unclear whether and how co-infecting pathogens contribute to disease pathogenesis. To address this, we followed the entire course of the disease in cases with severe or critical COVID-19 to determine the presence and abundance of all potential pathogens present-the total "infectome"-and how they interact with the host immune system in the context of severe COVID-19. Methods: We examined one severe and three critical cases of COVID-19, as well as a set of healthy controls, with longitudinal samples (throat swab, whole blood, and serum) collected from each case. Total RNA sequencing (meta-transcriptomics) was performed to simultaneously investigate pathogen diversity and abundance, as well as host immune responses, in each sample. A Bio-Plex method was used to measure serum cytokine and chemokine levels. Results: Eight pathogens, SARS-CoV-2, Aspergillus fumigatus (A. fumigatus), Mycoplasma orale (M. orale), Myroides odoratus (M. odoratus), Acinetobacter baumannii (A. baumannii), Candida tropicalis, herpes simplex virus (HSV) and human cytomegalovirus (CMV), identified in patients with COVID-19 appeared at different stages of the disease. The dynamics of inflammatory mediators in serum and the respiratory tract were more strongly associated with the dynamics of the infectome compared with SARS-CoV-2 alone. Correlation analysis revealed that pulmonary injury was directly associated with cytokine levels, which in turn were associated with the proliferation of SARS-CoV-2 and co-infecting pathogens. Conclusions: For each patient, the cytokine storm that resulted in acute lung injury and death involved a dynamic and highly complex infectome, of which SARS-CoV-2 was a component. These results indicate the need for a precision medicine approach to investigate both the infection and host response as a standard means of infectious disease characterization.

19.
Biomolecules ; 12(3)2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-35327630

RESUMO

The p53 family has the following three members: p53, p63 and p73. p53 is a tumor suppressor gene that frequently exhibits mutation in head and neck cancer. Most p53 mutants are loss-of-function (LoF) mutants, but some acquire some oncogenic function, such as gain of function (GoF). It is known that the aggregation of mutant p53 can induce p53 GoF. The p73 activators RETRA and NSC59984 have an anti-cancer effect in p53 mutation cells, but we found that p73 activators were not effective in all head and neck squamous cell carcinoma (HNSCC) cell lines, with different p53 mutants. A comparison of the gene expression profiles of several regulator(s) in mutant HNSCC cells with or without aggregation of p53 revealed that nicotinamide phosphoribosyltransferase (NAMPT) is a key regulator of mutant p53 aggregation. An NAMPT inhibitor, to reduce abnormal aggregation of mutant p53, used in combination with a p73 activator, was able to effectively repress growth in HNSCC cells with p53 GoF mutants. This study, therefore, suggests a potential combination therapy approach for HNSCC with a p53 GoF mutation.


Assuntos
Neoplasias de Cabeça e Pescoço , Proteína Supressora de Tumor p53 , Proliferação de Células , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Humanos , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Proteína Tumoral p73/genética , Proteína Tumoral p73/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
20.
PLoS Pathog ; 18(2): e1010259, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35176118

RESUMO

At the end of 2019 Wuhan witnessed an outbreak of "atypical pneumonia" that later developed into a global pandemic. Metagenomic sequencing rapidly revealed the causative agent of this outbreak to be a novel coronavirus denoted SARS-CoV-2. To provide a snapshot of the pathogens in pneumonia-associated respiratory samples from Wuhan prior to the emergence of SARS-CoV-2, we collected bronchoalveolar lavage fluid samples from 408 patients presenting with pneumonia and acute respiratory infections at the Central Hospital of Wuhan between 2016 and 2017. Unbiased total RNA sequencing was performed to reveal their "total infectome", including viruses, bacteria and fungi. We identified 35 pathogen species, comprising 13 RNA viruses, 3 DNA viruses, 16 bacteria and 3 fungi, often at high abundance and including multiple co-infections (13.5%). SARS-CoV-2 was not present. These data depict a stable core infectome comprising common respiratory pathogens such as rhinoviruses and influenza viruses, an atypical respiratory virus (EV-D68), and a single case of a sporadic zoonotic pathogen-Chlamydia psittaci. Samples from patients experiencing respiratory disease on average had higher pathogen abundance than healthy controls. Phylogenetic analyses of individual pathogens revealed multiple origins and global transmission histories, highlighting the connectedness of the Wuhan population. This study provides a comprehensive overview of the pathogens associated with acute respiratory infections and pneumonia, which were more diverse and complex than obtained using targeted PCR or qPCR approaches. These data also suggest that SARS-CoV-2 or closely related viruses were absent from Wuhan in 2016-2017.


Assuntos
COVID-19/epidemiologia , Surtos de Doenças , Pneumonia/epidemiologia , Infecções Respiratórias/epidemiologia , SARS-CoV-2/isolamento & purificação , Doença Aguda , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Líquido da Lavagem Broncoalveolar/microbiologia , COVID-19/virologia , China/epidemiologia , Estudos de Coortes , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Metagenômica , Pessoa de Meia-Idade , Filogenia , Pneumonia/microbiologia , Infecções Respiratórias/microbiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA