Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
Plant Dis ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720540

RESUMO

Passion fruit (Passilora edulis), known as the "king of fruit juices", is popular in southern China (Yuan et al. 2019). Stem base rot is a devastating disease of passion fruit commonly caused by several Fusarium spp. (Zakaria, 2022). In July 2022, typical symptoms of stem base rot were observed in a poorly managed "Qinmi No. 9" Golden passion fruit orchard in Jingxi (23°13'10"N, 106°5'23"E). The disease incidence had reached 40% (n=200) in the survey. Symptoms included ulceration and mutilation at the stem base, making the plants prone to breakage when pulled, wilting and drooping leaves above ground, and severe cases leading to the entire plant withering and dying. Fourteen plants with obvious symptoms were collected. Thin sections of plant tissue were cut from junction of sickness and health of stem, sterilized with ethanol and sodium hypochlorite, and placed on PDA medium at 28°C. Sixty fungal strains were obtained, 90% of which was identified as Fusarium based on morphology. 80% of Fusarium were F. oxysporum species complex (FOSC), but pathogenicity experiment showed all FOSC were weakly pathogenic. However, two severely pathogenic fungi with similar morphology but distinct from Fusarium were identified from the same plant. The representative strain C11 was selected for further study. C11 demonstrated a rapid growth rate, reaching a 90 mm diameter colony on PDA cultured at 25°C for 7 days. The colony displaced a round, flat shape with an overall light brown front, and cottony gray or light brown mycelium, while the reverse side was dark brown. Conidia production was observed as typically occurred in multiple chains after 14 days culture on OA medium, with round, oval or straight rod-like brown conidia ranging in size from 5.74-23.42×14.67-67.22, featuring 1-8 transverse septa and 0-3 mediastinum (Figure S1). For molecular identification, the internal transcribed spacer (ITS, OR616614), translation elongation factor 1-alpha (TEF, OR633298), alternaria major allergen (Alt a1, OR633294) gene, glyceraldehyde 3-phosphate dehydrogenase (GAPDH, OR633295), RNA polymerase subunit II gene (RPB2, OR633297), 18S Small subunit rDNA (SSU, OR616608) , 28S Large Subunit rDNA (LSU, OR616615), the KOG1058 gene regions (OR633296) and an approximately segment of the anonymous noncoding region (OPA10-2, OR633299) were amplified from C11 (Liu et al. 1999, Li et al. 2023, Andrew et al. 2009), and deposited in GenBank with accession number shown in the brackets. Phylogenetic trees were constructed in MEGA11 after splicing by BioEdit (Figure S3). Combining morphology and molecular analyses, C11 was identified as Alternaria gossypina (Woudenberg et al. 2015). To test the pathogenicity, the base of the seedling stem (20cm in height) of 50 healthy "Tainong No. 1" variety of purple passion fruit, which was more susceptible to stem-base rot, was puncture wound with needles, inoculated with 6 mm diameter colonies of fungi, and then wrapped in wet cotton (Ángel et al. 2018). Ten healthy seedlings inoculated with PDA were used as controls. These plants were cultured in an artificial greenhouse at 30±5℃with 80±5% humidity. After 15 days, the plants inoculated with C11 exhibited symptoms similar to those in the field, whereas the controls remained healthy. A. gossypina was reisolated from the diseased plant stems, with the morphology and GAPDH sequence consistent with the inoculated (Figure S1, S2). This is the first report of passion fruit stem rot caused by A. gossypina. This finding will aid in the prevention and control of stem rot in passion fruit.

2.
Chemosphere ; 358: 142216, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705403

RESUMO

As a novel biological wastewater nitrogen removal technology, simultaneous nitrification and denitrification (SND) has gained increasing attention. Iron, serving as a viable material, has been shown to influence nitrogen removal. However, the precise impact of iron on the SND process and microbiome remains unclear. In this study, bioreactors amended with iron of varying valences were evaluated for total nitrogen (TN) removal efficiencies under aerobic conditions. The acclimated control reactor without iron addition (NCR) exhibited high ammonia nitrogen (AN) removal efficiency (98.9%), but relatively low TN removal (78.6%) due to limited denitrification. The reactor containing zero-valent iron (Fe0R) demonstrated the highest SND rate of 92.3% with enhanced aerobic denitrification, albeit with lower AN removal (84.1%). Significantly lower SND efficiencies were observed in reactors with ferrous (Fe2R, 66.3%) and ferric (Fe3R, 58.2%) iron. Distinct bacterial communities involved in nitrogen metabolisms were detected in these bioreactors. The presence of complete ammonium oxidation (comammox) genus Nitrospira and anammox bacteria Candidatus Brocadia characterized efficient AN removal in NCR. The relatively low abundance of aerobic denitrifiers in NCR hindered denitrification. Fe0R exhibited highly abundant but low-efficiency methanotrophic ammonium oxidizers, Methylomonas and Methyloparacoccus, along with diverse aerobic denitrifiers, resulting in lower AN removal but an efficient SND process. Conversely, the presence of Fe2+/Fe3+ constrained the denitrifying community, contributing to lower TN removal efficiency via inefficient denitrification. Therefore, different valent irons modulated the strength of nitrification and denitrification through the assembly of key microbial communities, providing insight for microbiome modulation in nitrogen-rich wastewater treatment.


Assuntos
Bactérias , Reatores Biológicos , Desnitrificação , Ferro , Nitrificação , Nitrogênio , Águas Residuárias , Reatores Biológicos/microbiologia , Nitrogênio/metabolismo , Águas Residuárias/química , Águas Residuárias/microbiologia , Bactérias/metabolismo , Ferro/metabolismo , Ferro/química , Eliminação de Resíduos Líquidos/métodos , Microbiota , Aerobiose , Amônia/metabolismo , Compostos de Amônio/metabolismo
3.
Sci Total Environ ; 927: 172110, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38565348

RESUMO

Recently, it is reported that bacterial communication coordinates the whole consortia to jointly resist the adverse environments. Here, we found the bacterial communication inevitably distinguished bacterial adaptation among different species in partial nitrification reactor under decreasing temperatures. We operated a partial nitrification reactor under temperature gradient from 30 °C to 5 °C and found the promotion of bacterial communication on adaptation of ammonia-oxidizing bacteria (AOB) was greater than that of nitrite-oxidizing bacteria (NOB). Signal pathways with single-component sensing protein in AOB can regulate more genes involved in bacterial adaptation than that with two-component sensing protein in NOB. The negative effects of bacterial communication, which were seriously ignored, have been highlighted, and Clp regulator downstream diffusible signal factor (DSF) based signal pathways worked as transcription activators and inhibitors of adaptation genes in AOB and NOB respectively. Bacterial communication can induce differential adaptation through influencing bacterial interactions. AOB inclined to cooperate with DSF synthesis bacteria as temperature declined, however, cooperation between NOB and DSF synthesis bacteria inclined to get weakening. According to the regulatory effects of signal pathways, bacterial survival strategies for self-protection were revealed. This study hints a potential way to govern niche differentiation in the microbiota by bacterial communication, contributing to forming an efficient artificial ecosystem.


Assuntos
Reatores Biológicos , Nitrificação , Reatores Biológicos/microbiologia , Bactérias/metabolismo , Adaptação Fisiológica , Amônia/metabolismo , Fenômenos Fisiológicos Bacterianos
6.
Water Res ; 254: 121381, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442606

RESUMO

The role of ray radiation from the sunlight acting on organisms has long-term been investigated. However, how the light with different wavelengths affects nitrification and the involved nitrifiers are still elusive. Here, we found more than 60 % of differentially expressed genes (DEGs) in nitrifiers were observed under irradiation of blue light with wavelengths of 440-480 nm, which were 13.4 % and 20.3 % under red light and white light irradiation respectively. Blue light was more helpful to achieve partial nitrification rather than white light or red light, where ammonium oxidization by ammonia-oxidizing archaea (AOA) with the increased relative abundance from 8.6 % to 14.2 % played a vital role. This was further evidenced by the enhanced TCA cycle, reactive oxygen species (ROS) scavenge and DNA repair capacity in AOA under blue-light irradiation. In contrast, nitrite-oxidizing bacteria (NOB) was inhibited severely to achieve partial nitrification, and the newly discovered encoded blue light photoreceptor proteins made them more sensitive to blue light and hindered cell activity. Ammonia-oxidizing bacteria (AOB) expressed genes for DNA repair capacity under blue-light irradiation, which ensured their tiny impact by light irradiation. This study provided valuable insights into the photosensitivity mechanism of nitrifiers and shed light on the diverse regulatory by light with different radiation wavelengths in artificial systems, broadening our comprehension of the nitrogen cycle on earth.


Assuntos
Amônia , Nitrificação , Amônia/metabolismo , Solo , Oxirredução , Microbiologia do Solo , Filogenia , Archaea/genética , Archaea/metabolismo
7.
Front Plant Sci ; 15: 1340287, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38362448

RESUMO

Plants possess intricate defense mechanisms to resist cadmium (Cd) stress, including strategies like metal exclusion, chelation, osmoprotection, and the regulation of photosynthesis, with antioxidants playing a pivotal role. The application of nitrogen (N) and phosphorus (P) fertilizers are reported to bolster these defenses against Cd stress. Several studies investigated the effects of N or P on Cd stress in non-woody plants and crops. However, the relationship between N, P application, and Cd stress resistance in valuable timber trees remains largely unexplored. This study delves into the Cd tolerance mechanisms of Phoebe zhennan, a forest tree species, under various treatments: Cd exposure alone, combined Cd stress with either N or P and Cd stress with both N and P application. Our results revealed that the P application enhanced root biomass and facilitated the translocation of essential nutrients like K, Mn, and Zn. Conversely, N application, especially under Cd stress, significantly inhibited plant growth, with marked reductions in leaf and stem biomass. Additionally, while the application of P resulted in reduced antioxidant enzyme levels, the combined application of N and P markedly amplified the activities of peroxidase by 266.36%, superoxide dismutase by 168.44%, and ascorbate peroxidase by 26.58% under Cd stress. This indicates an amplified capacity of the plant to neutralize reactive oxygen species. The combined treatment also led to effective regulation of nutrient and Cd distribution in roots, shoots, and leaves, illustrating a synergistic effect in mitigating toxic impact of N. The study also highlights a significant alteration in photosynthetic activities under different treatments. The N addition generally reduced chlorophyll content by over 50%, while P and NP treatments enhanced transpiration rates by up to 58.02%. Our findings suggest P and NP fertilization can manage Cd toxicity by facilitating antioxidant production, osmoprotectant, and root development, thus enhancing Cd tolerance processes, and providing novel strategies for managing Cd contamination in the environment.

9.
Cell Tissue Bank ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319426

RESUMO

Osteochondral allograft (OCA) transplantation involves grafting of natural hyaline cartilage and supporting subchondral bone into the cartilage defect area to restore its biomechanical and tissue structure. However, differences in biomechanical properties and donor-host matching may impair the integration of articular cartilage (AC). This study analyzed the biomechanical properties of the AC in different regions of different sites of the knee joint and provided a novel approach to OCA transplantation. Intact stifle joints from skeletally mature pigs were collected from a local abattoir less than 8 h after slaughter. OCAs were collected from different regions of the joints. The patella and the tibial plateau were divided into medial and lateral regions, while the trochlea and femoral condyle were divided into six regions. The OCAs were analyzed and compared for Young's modulus, the compressive modulus, and cartilage thickness. Young's modulus, cartilage thickness, and compressive modulus of OCA were significantly different in different regions of the joints. A negative correlation was observed between Young's modulus and the proportion of the subchondral bone (r = - 0.4241, P < 0.0001). Cartilage thickness was positively correlated with Young's modulus (r = 0.4473, P < 0.0001) and the compressive modulus (r = 0.3678, P < 0.0001). During OCA transplantation, OCAs should be transplanted in the same regions, or at the closest possible regions to maintain consistency of the biomechanical properties and cartilage thickness of the donor and recipient, to ensure smooth integration with the surrounding tissue. A 7 mm depth achieved a higher Young's modulus, and may represent the ideal length.

10.
Sci Total Environ ; 921: 171107, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387560

RESUMO

Soil contamination by Cr(VI) has attracted widespread attention globally in recent years, but it remains a significant challenge in developing an environmentally friendly and eco-sustainable technique for the disposal of Cr(VI)-contaminated soil. Herein, a sustainable cyclic soil washing system for Cr(VI)-polluted soil remediation and the recovery of washing agents using biochar supported nanoscale zero-valent iron (nZVI-BC) was established. Citric acid (CA) was initially screened to desorb Cr(VI) from contaminated soil, mobilizing Cr from the highly bioaccessible fractions. The nZVI-BC exhibited superior properties for Cr(VI) and Cr(total) removal from spent effluent, allowing effective recovery of the washing agents. The elimination mechanism of Cr(total) by nZVI-BC involved the coordinated actions of electrostatic adsorption, reduction, and co-precipitation. The contributions to Cr(VI) reduction by Fe0, surface-bound Fe(II), and soluble Fe(II) were 0.6 %, 39.8 %, and 59.6 %, respectively. Meanwhile, CA favored the activity of surface-bound Fe(II) and Fe0 in nZVI-BC, enhancing the production of soluble Fe(II) to strengthen Cr(VI) removal. Finally, the recovered washing agent was proven to be reused three times. This study showcases that the combined soil washing using biodegradable chelant CA and effluent treatment by nZVI-BC could be a sustainable and promising strategy for Cr(VI)-contaminated soil remediation.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Poluentes Químicos da Água , Ferro , Solo , Poluentes do Solo/análise , Carvão Vegetal , Cromo/análise , Adsorção , Compostos Ferrosos , Poluentes Químicos da Água/análise
11.
Sci Total Environ ; 914: 169975, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38218496

RESUMO

Recently, photogranules composed of bacteria and microalgae for carbon-negative nitrogen removal receive extensive attention worldwide, yet which type of bacteria is helpful for rapid formation of photogranules and whether they depend on signaling communication remain elusive. Varied signaling communication was analyzed using metagenomic method among bacteria and microalgae in via of two types of experimentally verified signaling molecule from bacteria to microalgae, which include indole-3-acetic acid (IAA) and N-acyl homoserine lactones (AHLs) during the operation of photo-bioreactors. Signaling communication is helpful for the adaptability of bacteria to survive with algae. Compared with non-signaling bacteria, signaling bacteria more easily adapt to the varied conditions, evidenced by the increased abundance in the operated reactors. Signaling bacteria are easier to enter the phycosphere, and they dominate the interactions between bacteria and algae rather than non-signaling bacteria. The co-abundance groups (CAGs) with signaling bacteria possess higher abundance than that without signaling bacteria (22.27 % and 6.67 %). Importantly, signaling bacteria accessibly interact with microalgae, which possess higher degree centralities and 32.50 % of them are keystone nodes in the network, in contrast to only 18.66 % of non-signaling bacteria. Thauera carrying both IAA and AHLs synthase genes are highly enriched and positively correlated with nitrogen removal rate. Our work not only highlights the essential roles of signaling communication between microalgae and bacteria in the development of photogranules, but also enriches our understanding of microbial sociobiology.


Assuntos
Microalgas , Percepção de Quorum , Bactérias , Acil-Butirolactonas , Comunicação
12.
Comput Methods Biomech Biomed Engin ; 27(3): 285-295, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36847747

RESUMO

In order to analyze and evaluate the stability of lumbar spine and the risk of cage subsidence after different minimally invasive fusion operations, two finite element models Percutaneous endoscopic posterior lumbar interbody fusion (PE-PLIF) and minimally invasive transforaminal lumbar interbody Fusion (MIS-TLIF) were established. The results showed that compared with MIS-TLIF, PE-PLIF had better segmental stability, lower pedicle screw rod system stress, and lower risk of cage subsidence. The results suggest that the cage with appropriate height should be selected to ensure the segmental stability and avoid the risk of the subsidence caused by the cage with large height.


Assuntos
Procedimentos Cirúrgicos Minimamente Invasivos , Fusão Vertebral , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Vértebras Lombares/cirurgia , Fusão Vertebral/métodos , Endoscopia , Região Lombossacral/cirurgia
13.
Plant Cell Environ ; 47(2): 387-407, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38058262

RESUMO

The escalating impact of climate change and ultraviolet (UV) radiation is subjecting plants to unique combinations of UV-B and drought stress. These combined stressors could have additive, synergistic, or antagonistic effects, but the precise nature of these impacts remains uncertain, hampering our ability to predict plant adaptations approach towards stressors. Our analysis of various studies shows that UV-B or drought conditions detrimentally influence plant growth and health metrics by the enhanced generation of reactive oxygen species causing damage to lipids, proteins, carbohydrates and DNA. Further reducing biomass accumulation, plant height, photosynthetic efficiency, leaf area, and water transpiration, while enhancing stress-related symptoms. In response to UV-B radiation and drought stress, plants exhibit a notable up-regulation of specific acclimation-associated metabolites, including proline, flavonoids, anthocyanins, unsaturated fatty acids, and antioxidants. These metabolites play a pivotal role in conferring protection against environmental stresses. Their biosynthesis and functional roles are potentially modulated by signalling molecules such as hydrogen peroxide, abscisic acid, jasmonic acid, salicylic acid, and ethylene, all of which have associated genetic markers that further elucidate their involvement in stress response pathways. In comparison to single stress, the combination of UV-B and drought induces the plant defence responses and growth retardation which are less-than-additive. This sub-additive response, consistent across different study environments, suggests the possibility of a cross-resistance mechanism. Our outlines imply that the adverse effects of increased drought and UV-B could potentially be mitigated by cross-talk between UV-B and drought regimes utilizing a multidimensional approach. This crucial insight could contribute significantly to refining our understanding of stress tolerance in the face of ongoing global climate change.


Assuntos
Antocianinas , Resiliência Psicológica , Secas , Plantas/efeitos da radiação , Estresse Fisiológico/genética
14.
Med Biol Eng Comput ; 62(4): 1139-1152, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38153661

RESUMO

Osteoarthritis has become a major disease threatening human health. The mechanism of injury under fluid involvement can be studied by finite element method. However, most models only model the articular cartilage to study the subchondral bone structure, which is too simplistic. In this study, a complete osteochondral unit was modeled and provided with a poroelastic material, and as osteoarthritis develops and the size, thickness, and shape of the osteochondral unit defect varies, the fluid flow behavior is altered, which may have functional consequences that feed back into the progression of the injury. The results of the study showed that interstitial fluid pressure and velocity decreased in defective osteochondral units. This trend was exacerbated as the size and thickness of the defect in the osteochondral unit increased. When the defect reached the trabeculae, pressure around the cartilage defect in the osteochondral unit was greatest, flow velocity in the subchondral cortical bone was greatest, and pressure and flow velocity around the trabecular defect were lowest. As osteoarthritis develops, the osteochondral unit becomes more permeable, and the pressure of the interstitial fluid decreases while the flow rate increases, resulting in severe nutrient loss. This may be the fluid flow mechanism behind osteochondral defects and osteoarthritis.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Osso e Ossos , Osso Cortical
15.
Brachytherapy ; 23(2): 123-135, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38129211

RESUMO

BACKGROUND: Chemoradiation (CRT) may modulate the immune milieu as an in-situ vaccine. Rapid dose delivery of brachytherapy has unclear impact on T-cell repertoires. HPV-associated cancers express viral oncoproteins E6/E7, which enable tracking antigen/tumor-specific immunity during CRT. METHODS: Thirteen cervical cancer patients on a multi-institutional prospective protocol from 1/2020-1/2023 underwent standard-of-care CRT with pulsed-dose-rate brachytherapy boost (2 fractions). Cervix swabs at various timepoints underwent multiplex DNA deep sequencing of the TCR-ß/CDR3 region with immunoSEQ. Separately, HPV-responsive T-cell clones were also expanded ex vivo. Statistical analysis was via Mann-Whitney-U. RESULTS: TCR productive clonality, templates, frequency, or rearrangements increased post-brachytherapy in 8 patients. Seven patients had E6/E7-responsive evolution over CRT with increased productive templates (ranges: 1.2-50.2 fold-increase from baseline), frequency (1.2-1.7), rearrangements (1.2-40.2), and clonality (1.2-15.4). Five patients had HPV-responsive clonal expansion post-brachytherapy, without changes in HPV non-responsive clones. Epitope mapping revealed VDJ rearrangements targeting cervical cancer-associated antigens in 5 patients. The only two patients with disease recurrence lacked response in all metrics. A lack of global TCR remodeling correlated with worse recurrence-free survival, p = 0.04. CONCLUSION: CRT and brachytherapy alters the cervical cancer microenvironment to facilitate the expansion of specific T-cell populations, which may contribute to treatment efficacy.


Assuntos
Braquiterapia , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/radioterapia , Colo do Útero , Infecções por Papillomavirus/complicações , Linfócitos T , Braquiterapia/métodos , Estudos Prospectivos , Recidiva Local de Neoplasia , Receptores de Antígenos de Linfócitos T , Microambiente Tumoral
16.
Ying Yong Sheng Tai Xue Bao ; 34(10): 2739-2746, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-37897281

RESUMO

It is of great practical significance to identify service blind area, scientifically select park construction areas, and clarify the priority of parks' construction based on the co-ordination of supply-demand evaluation. With the urban parks within the Taiyuan Ring Expressway as the research subjects, we estimated the accessibility range and the service pressure of each park by using the application programming interface of Gaode map route planning and point of interest data to characterize their supply and demand levels. We identified the service blind areas of parks by overlay analysis, and used the location-allocation (LA) model to purposefully supply park green space. Results showed that the accessibility coverage rates of the parks by walking and bicycling within 15 minutes were 35.6% and 71.7%, respectively, indicating insufficient supply capacity of parks. The areas with large potential demand for park green space in Taiyuan were mainly concentrated in the business district of Qinxian-Changfeng Street and the Shuangta business district within Dongzhong ring road, which existed the obviously invisible blind areas. Finally, we proposed new park green space site selection proposal based on LA model. Optimization results indicated that the coverage rates of walking and bicycling within 15 minutes increased to 46.7% and 81.0%, respectively, and that the service pressure of parks was relieved. We combined the leisure demands of urban residents and the distribution of urban parks by utilizing network big data, which could promote the scientific nature and accuracy of the optimizing site selection and provide scientific method and theory basis for urban park construction.


Assuntos
Parques Recreativos , Humanos , Cidades , China
17.
Cancer Cell ; 41(11): 1945-1962.e11, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37863066

RESUMO

Tumor microbiota can produce active metabolites that affect cancer and immune cell signaling, metabolism, and proliferation. Here, we explore tumor and gut microbiome features that affect chemoradiation response in patients with cervical cancer using a combined approach of deep microbiome sequencing, targeted bacterial culture, and in vitro assays. We identify that an obligate L-lactate-producing lactic acid bacterium found in tumors, Lactobacillus iners, is associated with decreased survival in patients, induces chemotherapy and radiation resistance in cervical cancer cells, and leads to metabolic rewiring, or alterations in multiple metabolic pathways, in tumors. Genomically similar L-lactate-producing lactic acid bacteria commensal to other body sites are also significantly associated with survival in colorectal, lung, head and neck, and skin cancers. Our findings demonstrate that lactic acid bacteria in the tumor microenvironment can alter tumor metabolism and lactate signaling pathways, causing therapeutic resistance. Lactic acid bacteria could be promising therapeutic targets across cancer types.


Assuntos
Microbiota , Neoplasias do Colo do Útero , Feminino , Humanos , Ácido Láctico/metabolismo , Neoplasias do Colo do Útero/radioterapia , Lactobacillus/genética , Lactobacillus/metabolismo , Microambiente Tumoral
18.
Environ Sci Technol ; 57(40): 15087-15098, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37754765

RESUMO

Bacteria are often exposed to long-term starvation during transportation and storage, during which a series of enzymes and metabolic pathways are activated to ensure survival. However, why the surface color of the bacteria changes during starvation is still not well-known. In this study, we found black anammox consortia suffering from long-term starvation contained 0.86 mmol gVSS-1 cytochrome c, which had no significant discrepancy compared with the red anammox consortia (P > 0.05), indicating cytochrome c was not the key issue for chromaticity change. Conversely, we found that under starvation conditions cysteine degradation is an important metabolic pathway for the blackening of the anammox consortia for H2S production. In particular, anammox bacteria contain large amounts of iron-rich nanoparticles, cytochrome c, and other iron-sulfur clusters that are converted to produce free iron. H2S combines with free iron in bacteria to form Fe-S compounds, which eventually exist stably as FeS2, mainly in the extracellular space. Interestingly, FeS2 could be oxidized by air aeration, which makes the consortia turn red again. The unique self-protection mechanism makes the whole consortia appear black, avoiding inhibition by high concentrations of H2S and achieving Fe storage. This study expands the understanding of the metabolites of anammox bacteria as well as the bacterial survival mechanism during starvation.

19.
Microbiol Spectr ; : e0098523, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37724877

RESUMO

The monothiol glutaredoxin GrxD plays an essential role in the biosynthesis of the antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG) and the biocontrol capacity of the soil bacterium Pseudomonas fluorescens 2P24. However, the detailed mechanism underlying GrxD-mediated activation of the production of 2,4-DAPG remains unclear. Here, we found that GrxD directly interacted with IbaG, a BolA protein family member. The mutation of ibaG significantly decreased 2,4-DAPG production. Furthermore, expressing ibaG restored the production of 2,4-DAPG in the grxD ibaG double mutant to wild-type levels in the presence of dithiothreitol, suggesting that IbaG was required for GrxD-mediated regulation of 2,4-DAPG production. Transcriptome sequencing analyses revealed that IbaG plays a global role in gene regulation by affecting the expression of numerous genes throughout the genome. We also demonstrated that IbaG is an important regulator of several cellular processes, including swarming motility, biofilm formation, siderophore production, and acid resistance. Altogether, our data suggest that IbaG has an essential role in 2,4-DAPG production, motility, and biofilm formation. We also propose a regulatory mechanism linking GrxD to 2,4-DAPG production via IbaG. IMPORTANCE The production of 2,4-diacetylphloroglucinol (2,4-DAPG) is positively influenced by the monothiol glutaredoxin GrxD in Pseudomonas fluorescens 2P24. However, the regulatory mechanism underlying GrxD-mediated regulation of 2,4-DAPG biosynthesis is mostly uncharacterized. Here, we show the function of the BolA-like protein IbaG in 2,4-DAPG biosynthesis. We also demonstrate that GrxD directly interacts with IbaG and influences the redox state of IbaG. Altogether, this work provides new insights into the role of the highly conserved IbaG protein in regulating 2,4-DAPG synthesis, biofilm formation, and other biocontrol traits of P. fluorescens.

20.
ACS Omega ; 8(31): 28409-28418, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37576615

RESUMO

This study evaluated the effects of ultraviolet (UV) photolysis combined with electrochemical oxidation on sulfonamides (SAs) as well as its treated effluent on the bacterial community in surface water. In terms of degradation rate, the best anode material for electrochemical oxidation was Ti/RuO2-IrO2, which had the highest degradation kinetic constant compared to Ti/Ta2O5-IrO2 and Ti/Pt. Experiments showed the highest degradation rate of SAs at 8.3 pH. Similarly, increasing the current leads to stronger degradation due to the promotion of free chlorine production, and its energy consumption rate decreases slightly from 73 to 67 W h/mmol. Compared with tap water, the kinetic constants decreased by 20-62% for SAs in three different surface water samples, which was related to the decrease in free chlorine. When extending the reaction time to 24 h, the concentrations of chemical oxygen demand and total organic carbon decreased by approximately 30-40%, indicating that the SAs and their products could be mineralized. The diversity analysis showed that the effluents influenced the richness and diversity of the bacterial community, particularly in the 4 h sample. Additionally, there were 86 operational taxonomic units common to all samples, excluding the 4 h sample; significant differences were derived from changes in the Actinobacteriota and Bacteroidota phyla. The toxicity of the products might explain these changes, and these products could be mineralized, as observed in the 24 h sample. Therefore, the extension of treatment time would greatly reduce the ecological harm of treated effluent and ensure that the UV/electrochemical process is a feasible treatment option. Overall, this study provides valuable insight into the optimization and feasibility of UV/electrochemical processes as a sustainable treatment option for sulfonamide-contaminated water sources, emphasizing the importance of considering ecological impacts and the need for extended treatment times that address environmental concerns and ensuring improved water quality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA