Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(22): e202400927, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38570886

RESUMO

In a recent communication (Angew. Chem. Int. Ed. 2024, 63, e202317312), Kalita et al. studied In4H+ system within the frame of single-reference approximation (SRA) and found that the global energy minimum (1 a) adopted the singlet state and a planar tetracoordinate hydrogen (ptH), while the second lowest isomer (1 b) located 3.0 kcal/mol above 1 a and adopted the triplet state as well as non-planar structure with a quasi-ptH. They assessed the reliability of SRA by checking the T1-diagnostic values of coupled cluster calculations. However, according to our multi-configurational second-order perturbation theory calculations at the CASPT2(12,13)/aug-cc-pVQZ (aug-cc-pVQZ-PP for In) level, both 1 a and 1 b exhibit obvious multi-referential characters, as reflected by their largest reference coefficients of 0.928 (86.1 %) and 0.938 (88.0 %), respectively. Moreover, 1 b is 5.05 kcal/mol lower than 1 a at this level, that is, what can be observed in In4H+ system is the quasi-ptH.

2.
Nanoscale ; 16(9): 4778-4786, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38305072

RESUMO

It is highly challenging to control (stop and resume as needed) molecular rotors because their intramolecular rotations are electronically enabled by delocalized σ bonding, and the desired control needs to be able to destroy and restore such σ bonding, which usually means difficult chemical manipulation (substitution or doping atom). In this work, we report CBe4H6, a molecular rotor that can be controlled independently of chemical manipulation. This molecule exhibited the uninterrupted free rotation of Be and H atoms around the central carbon in first-principles molecular dynamics simulations at high temperatures (600 and 1000 K), but the rotation cannot be witnessed in the simulation at room temperature (298 K). Specifically, when a C-H bond in the CBe4H6 molecule adopts the equatorial configuration at 298 K, it destroys the central delocalized σ bonding and blocks the intramolecular rotation (the rotor is turned "OFF"); when it can adopt the axial configuration at 600 and 1000 K, the central delocalized σ bonding can be restored and the intramolecular rotation can be resumed (the rotor is turned "ON"). Neutral CBe4H6 is thermodynamically favorable and electronically stable, as reflected by a wide HOMO-LUMO gap of 7.99 eV, a high vertical detachment energy of 9.79 eV, and a positive electron affinity of 0.24 eV, so it may be stable enough for the synthesis, not only in the gas phase, but also in the condensed phase.

3.
J Chem Phys ; 160(5)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38341688

RESUMO

Realization of planar tetracoordinate arrangements of nitrogen atoms is challenging because their preference for localized bonding (caused by its high electronegativity) makes them typically tricoordinate. This is especially true for the more electronegative oxygen atoms. Herein, we computationally designed two clusters NBe4H4- and OBe4H4; they contain a planar tetracoordinate nitrogen (ptN) and planar tetracoordinate oxygen (ptO) atom, respectively. Remarkably, the former is a dynamically stable global minimum, while the latter is not. The bonding analysis proves that planar tetracoordination in NBe4H4- favors over tricoordination because of the presence of multicenter delocalized bonds. In contrast, the planar tricoordination dominates due to its weak delocalized bonding ability of oxygen in the OBe4H4 cluster. Moreover, the 6σ/2π double aromaticity due to multicenter delocalized bonds allows the NBe4H4- cluster to obtain additional stability. This cluster is a promising synthetic due its dynamic and thermodynamic stability.

4.
Chem Commun (Camb) ; 60(10): 1341-1344, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38197330

RESUMO

Replacing one of the peripheral Se with a Se2 bridge is an effective strategy to flatten the C4v CB4Se4 cluster. The global minimum of CB4Se5 contains one fan-shaped planar tetracoordinate carbon (ptC) CB4 core, possessing double 2π + 6σ aromaticity. The peripheral Se2 bridge is dexterous and crucial for the stability of CB4Se5.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA