Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Vet Sci ; 11(5)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38787180

RESUMO

Infectious coryza is an acute respiratory infection caused by Avibacterium paragallinarum, which is widely distributed throughout the world. However, there is no effective molecular typing scheme to obtain basic knowledge about the Av. paragallinarum population structure. This study aimed to develop a multilocus sequence typing (MLST) scheme for Av. paragallinarum that allows for the worldwide comparison of sequence data. For this purpose, the genetic variability of 59 Av. paragallinarum strains from different geographical origins and serovars was analyzed to identify correlations. The MLST scheme was developed using seven conserved housekeeping genes, which identified eight STs that clustered all of the strains into three evolutionary branches. The analytical evaluation of the clone group relationship between the STs revealed two clone complexes (CC1 and CC2) and three singletons (ST2, ST5, and ST6). Most of the isolates from China belonged to ST1 and ST3 in CC1. ST8 from Peru and ST7 from North America together formed CC2. Our results showed that the Av. paragallinarum strains isolated from China had a distant genetic relationship with CC2, indicating strong regional specificity. The MLST scheme established in this study can monitor the dynamics and genetic differences of Av. paragallinarum transmission.

2.
Front Plant Sci ; 15: 1294895, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645388

RESUMO

Livestock presence impacts plant biodiversity (species richness) in grassland ecosystems, yet extent and direction of grazing impacts on biodiversity vary greatly across inter-annual periods. In this study, an 8-year (2014-2021) grazing gradient experiment with sheep was conducted in a semi-arid grassland to investigate the impact of grazing under different precipitation variability on biodiversity. The results suggest no direct impact of grazing on species richness in semi-arid Stipa grassland. However, increased grazing indirectly enhanced species richness by elevating community dominance (increasing the sheltering effect of Stipa grass). Importantly, intensified grazing also regulates excessive community biomass resulting from increased inter-annual wetness (SPEI), amplifying the positive influence of annual humidity index on species richness. Lastly, we emphasize that, in water-constrained grassland ecosystems, intra-annual precipitation variability (PCI) was the most crucial factor driving species richness. Therefore, the water-heat synchrony during the growing season may alleviate physiological constraints on plants, significantly enhancing species richness as a result of multifactorial interactions. Our study provides strong evidence for how to regulate grazing intensity to increase biodiversity under future variable climate patterns. We suggest adapting grazing intensity according to local climate variability to achieve grassland biodiversity conservation.

3.
Microbiol Spectr ; 12(1): e0301023, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37991362

RESUMO

IMPORTANCE: Pseudorabies virus (PRV) is a kind of alpha herpesvirus that infects a wide range of animals and even human beings. Therefore, it is important to explore the mechanisms behind PRV replication and pathogenesis. By conducting a tandem mass tag-based phosphoproteome, this study revealed the phosphorylated proteins and cellular response pathways involved in PRV infection. Findings from this study shed light on the relationship between the phosphorylated cellular proteins and PRV infection, as well as guiding the discovery of targets for the development of antiviral compounds against PRV.


Assuntos
Herpesvirus Suídeo 1 , Pseudorraiva , Animais , Humanos , Herpesvirus Suídeo 1/metabolismo , Pseudorraiva/tratamento farmacológico , Pseudorraiva/patologia , Replicação Viral , Antivirais/farmacologia , Antivirais/uso terapêutico
4.
Front Vet Sci ; 10: 1314903, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38146498

RESUMO

The infectious bursal disease virus (IBDV) is a member of the viruses that can induce immunosuppression in chickens. In recent years, more and more IBDV-infected cases by the novel variant IBDV were reported in China, and it has been demonstrated that currently used vaccines could not provide complete protection against these new IBDV variants. However, a lack of comprehensive analysis of the genomic characteristics of the novel variant strain IBDV has hampered its vaccine development. In this study, a strain of IBDV, designated HB202201, was phylogenetically analyzed, and it was found that the hypervariable region (HVR) of VP2 belonged to the novel variant strain. Furthermore, the 5'- and 3'-ends of segments A and B were analyzed using the rapid amplification of cDNA end (RACE) method. After the full-length of segment A and segment B were determined, the phylogenetic analysis of the segment A and segment B showed that the isolated HB202201 belonged to A2dB1 genotype, which demonstrated the HB202201 belonged to the novel variant strain. In addition, the specific mutations in VP1-VP5 amino acids were analyzed, which showed that there were multiple typical mutations in novel variant IBDV proteins, including VP1 (G24, I141, V163, and E240), VP2 (K221, and I252), VP3 (Q167 and L196), and VP5 (R7, P44, R92, G104, and E147), whereas there was no typical mutation in VP4. This study provides insights into the genomic and antigenic characteristics of the novel variant IBDV, which will promote the development of novel vaccine against the novel variant IBDV.

5.
Front Plant Sci ; 14: 1275018, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148860

RESUMO

Phylogenetic analysis provides crucial insights into the evolutionary relationships and diversification patterns within specific taxonomic groups. In this study, we aimed to identify the phylogenetic relationships and explore the evolutionary history of Stipa using transcriptomic data. Samples of 12 Stipa species were collected from the Qinghai-Tibet Plateau and Mongolian Plateau, where they are widely distributed, and transcriptome sequencing was performed using their fresh spikelet tissues. Using bidirectional best BLAST analysis, we identified two sets of one-to-one orthologous genes shared between Brachypodium distachyon and the 12 Stipa species (9397 and 2300 sequences, respectively), as well as 62 single-copy orthologous genes. Concatenation methods were used to construct a robust phylogenetic tree for Stipa, and molecular dating was used to estimate divergence times. Our results indicated that Stipa originated during the Pliocene. In approximately 0.8 million years, it diverged into two major clades each consisting of native species from the Mongolian Plateau and the Qinghai-Tibet Plateau, respectively. The evolution of Stipa was closely associated with the development of northern grassland landscapes. Important external factors such as global cooling during the Pleistocene, changes in monsoonal circulation, and tectonic movements contributed to the diversification of Stipa. This study provided a highly supported phylogenetic framework for understanding the evolution of the Stipa genus in China and insights into its diversification patterns.

6.
Vet Microbiol ; 287: 109896, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37931575

RESUMO

The NF-κB pathway is a critical signaling involved in the regulation of the inflammatory and innate immune responses. Previous studies have shown that Pseudorabies Virus (PRV), a porcine alpha herpesvirus, could lead to the phosphorylation and nucleus translocation of p65 while inhibiting the expression of NF-κB-dependent inflammatory cytokines, which indicated that there may be unknown mechanisms downstream of p65 that downregulate the activation of NF-κB signaling. Here, we found that PRV DNA polymerase factor UL42 inhibited TNFα-, LPS-, IKKα-, IKKß-, and p65-mediated transactivation of NF-κB signaling, which demonstrated UL42 worked either at or downstream of p65. In addition, it was found that the DNA-binding activity of UL42 was required for inhibition of NF-κB signaling. Importantly, it was revealed that UL42 could induce the ubiquitination degradation of p65 by upregulating the suppressor of cytokine signaling 1 (SOCS1). Additionally, it was found that UL42 could promote the K6/K29-linked ubiquitination of p65. Finally, knockdown of SOCS1 attenuated the replication of PRV and led to a significant increase of the inflammatory cytokines. Taken together, our findings uncovered a novel mechanism that PRV-UL42 could upregulated SOCS1 to promote the ubiquitination degradation of p65 to prevent excessive inflammatory response during PRV infection.


Assuntos
Herpesvirus Suídeo 1 , NF-kappa B , Animais , Suínos , NF-kappa B/metabolismo , Herpesvirus Suídeo 1/genética , Herpesvirus Suídeo 1/metabolismo , Transdução de Sinais , Proteínas Supressoras da Sinalização de Citocina , Citocinas/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo
7.
Int J Mol Sci ; 24(19)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37833925

RESUMO

Pseudorabies virus (PRV), an alpha herpesvirus, induces significant economic losses to the swine industry and infects multiple kinds of animals. Therefore, it is of great importance to explore anti-PRV compounds. In this study, to explore the anti-PRV compounds, a library of natural compounds was screened through a cell-based ELISA assay, and it was discovered that bufalin, a Na+/K+-ATPase inhibitor, had a robust inhibitory effect on PRV replication. A time-of-addition experiment and temperature-shift assay showed that bufalin significantly inhibited the entry stage of PRV. NaCl- or KCl-treatment showed that NaCl could enhance the inhibitory effect of bufalin on PRV replication, whereas there was no significant effect under the treatment of KCl. Meanwhile, it was also found that bufalin possessed antiviral activity against other alpha herpesviruses, including human herpes simplex virus type 1 (HSV-1) and chicken Marek's disease virus (MDV). Finally, it was found that bufalin could decrease the viral load in multiple tissues, and reduce the morbidity and mortality in PRV-challenged BALB/c mice. Overall, our findings demonstrated that bufalin has the potential to be developed as an anti-PRV compound.


Assuntos
Herpesviridae , Herpesvirus Suídeo 1 , Camundongos , Animais , Suínos , Humanos , Cloreto de Sódio/farmacologia , Adenosina Trifosfatases
8.
Res Vet Sci ; 164: 105033, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37804663

RESUMO

Pseudorabies virus (PRV) belongs to the species of alphaherpesvirus that can cause substantial economic losses to the world swine industry. Therefore, research on anti-PRV compounds is of great value. In this study, it was found that ginkgolic acid could efficiently inhibit the replication of PRV, and the IC50 and CC50 were 3.407 µM and 102.3 µM, respectively. Moreover, it was discovered that ginkgolic acid had no effect on the adsorption, entry, and release stages of the PRV replication cycle. Importantly, it was found that ginkgolic acid could significantly suppress the transcription of PRV late genes, while the transcription of viral immediate early and early genes was not affected. Finally, in vivo experiments showed that ginkgolic acid could significantly reduce the viral load of PRV in multiple tissues and increase 30% survival rate of mice upon the challenge of PRV. Taken together, a novel PRV replication inhibitor, ginkgolic acid, which worked through suppressing the transcription of the late genes, was found in this study. This study provides a potential therapy method for the infection of PRV.


Assuntos
Herpesvirus Suídeo 1 , Pseudorraiva , Doenças dos Suínos , Camundongos , Animais , Suínos , Herpesvirus Suídeo 1/genética , Genes Virais , Replicação Viral
9.
Infect Dis Poverty ; 12(1): 72, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563679

RESUMO

BACKGROUND: In the normal life cycle of the parasite (Echinococcus multilocularis) that causes alveolar echinococcosis, domestic and wild carnivores act as definitive hosts, and rodents act as intermediate hosts. The presented study contributes to the research on the distribution and transmission pattern of E. multilocularis in China having identified sheep as an unusual intermediate host taking part in the domestic transmission of alveolar echinococcosis in Gansu Province, China. METHODS: From 2020 to 2021, nine whitish different cyst-like were collected from the liver of sheep in Gansu Province for examination. A near complete mitochondrial (mt) genome and selected nuclear genes were amplified from the cyst-like lesion for identification. To confirm the status of the specimen, comparative analysis with reference sequences, phylogenetic analysis, and network analysis were performed. RESULTS: The isolates displayed ≥ 98.87% similarity to E. multilocularis NADH dehydrogenase sub-unit 1 (nad1) (894 bp) reference sequences deposited in GenBank. Furthermore, amplification of the nad4 and nad2 genes also confirmed all nine samples as E. multilocularis with > 99.30% similarity. Additionally, three nuclear genes, pepck (1545 bp), elp-exons VII and VIII (566 bp), and elp-exon IX (256 bp), were successfully amplified and sequenced for one of the isolates with 98.42% similarity, confirming the isolates were correctly identified as E. multilocularis. Network analysis also correctly placed the isolates with other E. multilocularis. CONCLUSIONS: As a result of the discovery of E. multilocularis in an unusual intermediate host, which is considered to have the highest zoonotic potential, the result clearly demonstrated the necessity for expanded surveillance in the area.


Assuntos
Cistos , Echinococcus multilocularis , Animais , Ovinos/genética , Echinococcus multilocularis/genética , Filogenia , China/epidemiologia , DNA
10.
Sci Total Environ ; 899: 165636, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37487897

RESUMO

Plant functional traits can elucidate the response of plant communities and ecosystems to biotic and abiotic disturbances. However, whether livestock consume more aboveground biomass (AGB) in communities dominated by species with 'acquisitive' traits or in communities where biodiversity is high is not well known. Here, we measured 22 functional traits of the grazing communities and control communities in a Mongolian Plateau desert steppe. The effects of grazing on AGB, CWM traits, species diversity, and functional diversity (FD) were analysed, furthermore, we estimated the grazing impact by using the log response ratio (LRR, an increasing value shows a higher grazing impact) and investigated the correlations between the LRR, plant growth, and community-weighted mean (CWM) traits and diversity indices. We found that grazing significantly increased the CWM dry matter content and carbon-to­nitrogen ratio and decreased the CWM height, specific leaf area (SLA), and nitrogen and phosphorus contents. The AGB decreased, while species diversity and FD increased under grazing treatments. Additionally, we found that plant traits and biodiversity could predict the response of AGB to grazing, the LRR was higher in patches dominated by species with 'acquisitive' foliage and in patches with higher biodiversity; in these patches, plant growth was lower. In the study area, the response of CWM traits to grazing suggests an avoidance strategy, which may be more conducive for adapting to low resource utilization environments. Also, the relationship between the CWM traits and the LRR indicated that the effect of grazing on AGB was mainly related to the selective foraging of herbivores. In addition, patches preferred by livestock may not recover quickly, leading to slow growth and thus reduced biomass under grazing treatments after prolonged grazing.


Assuntos
Biodiversidade , Ecossistema , Animais , Biomassa , Plantas , Gado , Nitrogênio , Pradaria
11.
Parasitology ; 150(9): 813-820, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37475454

RESUMO

Echinococcus shiquicus is peculiar to the Qinghai­Tibet plateau of China. Research on this parasite has mainly focused on epidemiological surveys and life cycle studies. So far, limited laboratory studies have been reported. Here, experimental infection of E. shiquicus metacestode in BALB/c mice and Mongolian jirds (Meriones unguiculatus) was carried out to establish alternative laboratory animal models. Intraperitoneal inoculation of metacestode material containing protoscoleces (PSCs) obtained from infected plateau pikas were conducted on BALB/c mice. Furthermore, metacestode material without PSCs deriving from infected BALB/c mice was intraperitoneally inoculated to Mongolian jirds. Experimental animals were dissected for macroscopic and histopathological examination. The growth of cysts in BALB/c mice was infiltrative, and they invaded the murine entire body. Most of the metacestode cysts were multicystic, but a few were unilocular. The cysts contained sterile vesicles, which had no PSCs. The metacestode materials were able to successfully infect new mice. In the jirds model, E. shiquicus cysts were typically formed freely in the peritoneal cavity; the majority of these cysts were free while a small portion adhered loosely to nearby organs. The proportion of fertile cysts was high, and contained many PSCs. The PSCs produced in Mongolian jirds also successfully infected new ones, which confirms that jirds can serve as an alternative experimental intermediate host. In conclusion, a laboratory animal infection was successfully established for E. shiquicus using BALB/c mice and Mongolian jirds. These results provide new models for the in-depth study of Echinococcus metacestode survival strategy, host interactions and immune escape mechanism.


Assuntos
Coinfecção , Cistos , Equinococose , Echinococcus , Lagomorpha , Camundongos , Animais , Gerbillinae , Equinococose/parasitologia , Camundongos Endogâmicos BALB C , Lagomorpha/parasitologia
12.
Front Microbiol ; 14: 1178005, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37455710

RESUMO

Avian reovirus (ARV) causing viral arthritis/tenosynovitis and viral enteritis in domestic fowl has significantly threatened on the poultry industry worldwide. ARV is a non-enveloped fusogenic virus that belongs to the Reoviridae family. Previous research revealed that cellular cholesterol in lipid rafts is essential for ARV replication. It has been reported that cholesterol 25-hydroxylase (CH25H) and its product 25-hydroxycholesterol (25HC) have antiviral activities against enveloped viruses. However, few studies characterized the association of non-enveloped viruses with CH25H and the role of CH25H in the regulation of ARV replication. In this study, the expression of chicken CH25H (chCH25H) was found to be upregulated in ARV-infected cells at the early stage of infection. The results of overexpression and knockdown assays revealed that chCH25H has a significant antiviral effect against ARV infection. Furthermore, a 25HC treatment significantly inhibited ARV replication in a dose-dependent manner at both the entry and post-entry stages, and a chCH25H mutant lacking hydroxylase activity failed to inhibit ARV infection. These results indicate that CH25H, depending on its enzyme activity, exerts the antiviral effect against ARV via the synthesis of 25HC. In addition, we revealed that 25HC produced by CH25H inhibits viral entry by delaying the kinetics of ARV uncoating, and CH25H blocks cell-cell membrane fusion induced by the p10 protein of ARV. Altogether, our findings showed that CH25H, as a natural host restriction factor, possessed antiviral activity against ARV targeting viral entry and syncytium formation, through an enzyme activity-dependent way. This study may provide new insights into the development of broad-spectrum antiviral therapies.

13.
Nature ; 618(7965): 500-505, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37316724

RESUMO

Quantum computing promises to offer substantial speed-ups over its classical counterpart for certain problems. However, the greatest impediment to realizing its full potential is noise that is inherent to these systems. The widely accepted solution to this challenge is the implementation of fault-tolerant quantum circuits, which is out of reach for current processors. Here we report experiments on a noisy 127-qubit processor and demonstrate the measurement of accurate expectation values for circuit volumes at a scale beyond brute-force classical computation. We argue that this represents evidence for the utility of quantum computing in a pre-fault-tolerant era. These experimental results are enabled by advances in the coherence and calibration of a superconducting processor at this scale and the ability to characterize1 and controllably manipulate noise across such a large device. We establish the accuracy of the measured expectation values by comparing them with the output of exactly verifiable circuits. In the regime of strong entanglement, the quantum computer provides correct results for which leading classical approximations such as pure-state-based 1D (matrix product states, MPS) and 2D (isometric tensor network states, isoTNS) tensor network methods2,3 break down. These experiments demonstrate a foundational tool for the realization of near-term quantum applications4,5.

14.
Virus Res ; 332: 199119, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37201645

RESUMO

Avian reovirus (ARV) can commonly infect a flock and cause immunosuppressive diseases in poultry. The nonstructural protein p17 is involved in viral replication, and significant progress has been made in showing its ability to regulate cellular signaling pathways. In our previous study, to further investigate the effect of ARV p17 protein on viral replication, the host protein polyglu-tamine binding protein 1 (PQBP1) was identified to interact with p17 by a yeast two-hybrid system. In the current study, the interaction between PQBP1 and p17 protein was further confirmed by laser confocal microscopy and coimmunoprecipitation assays. In addition, the N-terminal WWD of PQBP1 was found to mediate the process of binding to the p17 protein. Interestingly, we found that ARV infection significantly inhibited PQBP1 expression. While the quantity of ARV replication was largely influenced by PQBP1, PQBP1 overexpression decreased ARV replication. In contrast, upon PQBP1 knockdown, the quantity of ARV was notably increased. ARV infection and p17 protein expression were both proven to induce PQBP1 to mediate cellular inflammation. In the current study, we revealed through qRT‒PCR, ELISA and Western blotting methods that PQBP1 plays a positive role in ARV-induced inflammation. Furthermore, the mechanism of this process was shown to involve the NFκB-dependent transcription of inflammatory genes. In addition, PQBP1 was shown to regulate the phosphorylation of p65 protein. In conclusion, this research provides clues to elucidating the function of the p17 protein and the pathogenic mechanism of ARV, especially the cause of the inflammatory response. It also provides new ideas for the study of therapeutic targets of ARV.


Assuntos
Orthoreovirus Aviário , Proteínas Virais , Animais , Chlorocebus aethiops , Proteínas Virais/metabolismo , Orthoreovirus Aviário/genética , Células Vero , Replicação Viral , Linhagem Celular
15.
Microbiol Spectr ; 11(3): e0520922, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37212663

RESUMO

Avibacterium paragallinarum is the pathogen involved in infectious coryza (IC), an acute infectious upper respiratory disease in chickens. The prevalence of IC has increased in China in recent years. There is a lack of reliable and effective procedures for gene manipulation, which has limited the research on the bacterial genetics and pathogenesis of A. paragallinarum. Natural transformation has been developed as a method of gene manipulation in Pasteurellaceae by the introduction of foreign genes or DNA fragments into bacterial cells, but there has been no report on natural transformation in A. paragallinarum. In this study, we analyzed the existence of homologous genetic factors and competence proteins underlying natural transformation in A. paragallinarum and established a method for transformation in it. Through bioinformatics analysis, we identified 16 homologs of Haemophilus influenzae competence proteins in A. paragallinarum. We found that the uptake signal sequence (USS) was overrepresented in the genome of A. paragallinarum (1,537 to 1,641 copies of the core sequence ACCGCACTT). We then constructed a plasmid, pEA-KU, that carries the USS and a plasmid, pEA-K, without the USS. These plasmids can be transferred via natural transformation into naturally competent strains of A. paragallinarum. Significantly, the plasmid that carries USS showed a higher transformation efficiency. In summary, our results demonstrate that A. paragallinarum has the ability to undergo natural transformation. These findings should prove to be a valuable tool for gene manipulation in A. paragallinarum. IMPORTANCE Natural transformation is an important mechanism for bacteria to acquire exogenous DNA molecules during the process of evolution. Additionally, it can also be used as a method to introduce foreign genes into bacteria under laboratory conditions. Natural transformation does not require equipment such as an electroporation apparatus. It is easy to perform and is similar to gene transfer under natural conditions. However, there have been no reports on natural transformation in Avibacterium paragallinarum. In this study, we analyzed the presence of homologous genetic factors and competence proteins underlying natural transformation in A. paragallinarum. Our results indicate that natural competence could be induced in A. paragallinarum serovars A, B, and C. Furthermore, the method that we established to transform plasmids into naturally competent A. paragallinarum strains was stable and efficient.


Assuntos
Infecções por Haemophilus , Haemophilus paragallinarum , Pasteurellaceae , Doenças das Aves Domésticas , Animais , Infecções por Haemophilus/veterinária , Infecções por Haemophilus/microbiologia , Doenças das Aves Domésticas/microbiologia , Galinhas/microbiologia , Pasteurellaceae/genética , Haemophilus paragallinarum/genética
16.
Parasitol Res ; 122(5): 1107-1126, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36933066

RESUMO

The identification of additional Echinococcus granulosus sensu lato (s.l.) complex species/genotypes in recent years raises the possibility that there might be more variation among this species in China than is currently understood. The aim of this study was to explore intra- and inter-species variation and population structure of Echinococcus species isolated from sheep in three areas of Western China. Of the isolates, 317, 322, and 326 were successfully amplified and sequenced for cox1, nad1, and nad5 genes, respectively. BLAST analysis revealed that the majority of the isolates were E. granulosus s.s., and using the cox1, nad1, and nad5 genes, respectively, 17, 14, and 11 isolates corresponded to Elodea canadensis (genotype G6/G7). In the three study areas, G1 genotypes were the most prevalent. There were 233 mutation sites along with 129 parsimony informative sites. A transition/transversion ratio of 7.5, 8, and 3.25, respectively, for cox1, nad1, and nad5 genes was obtained. Every mitochondrial gene had intraspecific variations, which were represented in a star-like network with a major haplotype with observable mutations from other distant and minor haplotypes. The Tajima's D value was significantly negative in all populations, indicating a substantial divergence from neutrality and supporting the demographic expansion of E. granulosus s.s. in the study areas. The phylogeny inferred by the maximum likelihood (ML) method using nucleotide sequences of cox1-nad1-nad5 further confirmed their identity. The nodes assigned to the G1, G3, and G6 clades as well as the reference sequences utilized had maximal posterior probability values (1.00). In conclusion, our study confirms the existence of a significant major haplotype of E. granulosus s.s. where G1 is the predominant genotype causing of CE in both livestock and humans in China.


Assuntos
Equinococose , Echinococcus granulosus , Animais , Humanos , Ovinos , Echinococcus granulosus/genética , Tibet , Equinococose/epidemiologia , Equinococose/veterinária , China , Genótipo , Haplótipos , Mutação , Filogenia , Variação Genética
17.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36902028

RESUMO

Pseudomonas syringae pv. actinidiae (Psa) causes bacterial canker of kiwifruit with heavy economic losses. However, little is known about the pathogenic genes of Psa. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas-mediated genome editing technology has dramatically facilitated the characterization of gene function in various organisms. However, CRISPR genome editing could not be efficiently employed in Psa due to lacking homologous recombination repair. The base editor (BE) system, which depends on CRISPR/Cas, directly induces single nucleoside C to T without homology recombination repair. Here, we used dCas9-BE3 and dCas12a-BE3 systems to create substitutions of C to T and to convert CAG/CAA/CGA codons to stop codons (TAG/TAA/TGA) in Psa. The dCas9-BE3 system-induced single C-to-T conversion frequency of 3 to 10 base positions ranged from 0% to 100%, with a mean of 77%. The dCas12a-BE3 system-induced single C-to-T conversion frequency of 8 to 14 base positions in the spacer region ranged from 0% to 100%, with a mean of 76%. In addition, a relatively saturated Psa gene knockout system covering more than 95% of genes was developed based on dCas9-BE3 and dCas12a-BE3, which could knock out two or three genes at the same time in the Psa genome. We also found that hopF2 and hopAO2 were involved in the Psa virulence of kiwifruit. The HopF2 effector can potentially interact with proteins such as RIN, MKK5, and BAK1, while the HopAO2 effector can potentially interact with the EFR protein to reduce the host's immune response. In conclusion, for the first time, we established a PSA.AH.01 gene knockout library that may promote research on elucidating the gene function and pathogenesis of Psa.


Assuntos
Actinidia , Pseudomonas syringae , Edição de Genes , Doenças das Plantas/microbiologia , Técnicas de Inativação de Genes , Actinidia/genética
18.
Vet Sci ; 10(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36977228

RESUMO

The pseudorabies virus is a widespread swine pathogen that has caused significant economic losses to the global pig industry. Due to the emergence of PRV variant strains in recent years, vaccines cannot provide complete protection against the infection of PRV. Therefore, the research on antiviral compounds is of great importance for PRV treatment. In this study, an EGFP-labeled PRV was used to screen anti-PRV compounds from 86 natural product extracts. Gallocatechin gallate was found to efficiently inhibit the replication of PRV with a half-maximal inhibitory concentration (IC50) of 0.41 µM. In addition, it was found that gallocatechin gallate was unable to directly inactivate PRV and had no effect on the attachment stage of PRV. However, it was found that gallocatechin gallate significantly suppressed the viral entry stage. Furthermore, it was found that the release stage of PRV was also significantly suppressed by gallocatechin gallate. Together, this study found that gallocatechin gallate could efficiently inhibit the replication of PRV by suppressing the entry and release stages of PRV, which will contribute to the development of a new therapeutic strategy against PRV infection.

19.
Virulence ; 14(1): 2185380, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36883685

RESUMO

Since its discovery, QX-type avian infectious bronchitis virus (IBV) has rapidly spread worldwide and become the most prevalent dominant genotype in Asia and Europe. Currently, although the pathogenicity of QX-type IBV in the reproductive system of hens is widely and deeply understood, its pathogenicity in the reproductive system of roosters remains largely unknown. In this study, 30-week-old specific pathogen-free (SPF) roosters were used to investigate the pathogenicity of QX-type IBV in the reproductive system after infection. The results showed that QX-type IBV infection caused abnormal testicular morphology, moderate atrophy and obvious dilatation of seminiferous tubules, and produced intense inflammation and obvious pathological injuries in the ductus deferens of infected chickens. Immunohistochemistry results showed that QX-type IBV can replicate in spermatogenic cells at various stages and in the mucous layer of the ductus deferens. Further studies showed that QX-type IBV infection affects plasma levels of testosterone, luteinizing hormone, and follicle-stimulating hormone as well as causes changes in transcription levels of their receptors in the testis. Furthermore, the transcription levels of StAR, P450scc, 3ßHSD and 17ßHSD4 also changed during testosterone synthesis after QX-type IBV infection, indicating that the virus can directly affect steroidogenesis. Finally, we found that QX-type IBV infection leads to extensive germ cell apoptosis in the testis. Collectively, our results suggest that QX-type IBV replicates in the testis and ductus deferens, causing severe tissue damage and disruption of reproductive hormone secretion. These adverse events eventually lead to mass germ cell apoptosis in the testis, affecting the reproductive function of roosters.


Assuntos
Vírus da Bronquite Infecciosa , Animais , Feminino , Masculino , Vírus da Bronquite Infecciosa/genética , Galinhas , Genitália , Apoptose , Hormônios Esteroides Gonadais
20.
BMC Vet Res ; 18(1): 416, 2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36447208

RESUMO

BACKGROUND: Pasteurella multocida (P. multocida) infection can cause a series of diseases in different animals and cause huge economic losses to the breeding industry. P. multocida is considered to be one of the most significant pathogens in rabbits. In order to elucidate the pathogenic mechanism and innate immune response of P. multocida, an infection experiment was carried out in this study. RESULTS: Our results showed that the clinical symptoms of rabbits were severe dyspnoea and serous nasal fluid. During the course of the disease, the deaths peaked at 2 days post infection (dpi) and mortality rate was 60%. The pathological changes of the lung, trachea, and thymus were observed. In particular, consolidation and abscesses appeared in lung. Histopathologic changes in rabbits showed edema, hemorrhage, and neutrophil infiltration in the lung. P. multocida can rapidly replicate in a variety of tissues, and the colonization in most of the tested tissues reached the maximum at 2 dpi and then decreased at 3 dpi. The number of P. multocida in lung and thymus remained high level at 3 dpi. Toll-like receptors 2 and 4 signaling pathways were activated after P. multocida infection. The expression of Il1ß, Il6, Il8, and Tnf-α was significantly increased. The expression of most proinflammatory cytokines peaked at 2 dpi and decreased at 3 dpi, and the expression trend of cytokines was consistent with the colonization of P. multocida in rabbit tissues. CONCLUSIONS: The P. multocida can rapidly replicate in various tissues of rabbit and cause bacteremia after infection. TLRs signaling pathways were activated after P. multocida infection, significantly inducing the expression of proinflammatory cytokines, which is might the main cause of respiratory inflammation and septicemia.


Assuntos
Lagomorpha , Infecções por Pasteurella , Pasteurella multocida , Animais , Coelhos , Virulência , Infecções por Pasteurella/veterinária , Imunidade Inata , Citocinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA