Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mini Rev Med Chem ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38879767

RESUMO

BACKGROUND: CPEB1 is an alternative polyadenylation binding protein that promotes or suppresses the expression of related mRNAs and proteins by binding to a highly conserved Cytoplasmic Polyadenylation Element (CPE) in the mRNAs 3'UTR. It is found to express abnormally in multiple tumors and affect tumorigenesis through many pathways. This review summarizes the functions and mechanisms of CPEB1 in a variety of cancers and suggests new directions for future related treatments. METHODS: A total of 95 articles were eligible for inclusion based on the year, quality of the research, and the strength of association with CPEB1. In this review, current research about how CPEB1 affects the initiation and progression of glioblastoma, breast cancer, hepatocellular carcinoma, gastric cancer, colorectal cancer, non-small cell lung cancer, prostate cancer, and melanoma are dissected, and the biomedical functions and mechanisms are summarized. RESULTS: CPEB1 mostly presents as a tumor suppressor for breast cancer, endometrial carcinoma, hepatocellular carcinoma, non-small cell lung cancer, prostate cancer, and melanoma. However, glioblastoma, gastric cancer, and colorectal cancer it exhibit two opposing properties of tumorigenesis, either promoting or inhibiting it. CONCLUSION: CPEB1 is likely to serve as a target and dynamic detection index or prognostic indicator for its function of apoptosis, activity, proliferation, migration, invasion, stemness, drug resistance, and even ferroptosis in various cancers.

2.
Curr Pharm Des ; 30(15): 1157-1166, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544395

RESUMO

A 324 bp lncRNA called CASC19 is found on chromosome 8q24.21. Recent research works have revealed that CASC19 is involved in the prognosis of tumors and related to the regulation of the radiation tolerance mechanisms during tumor radiotherapy (RT). This review sheds light on the changes and roles that CASC19 plays in many tumors and diseases, such as nasopharyngeal carcinoma (NPC), cervical cancer, colorectal cancer (CRC), non-small cell lung cancer (NSCLC), clear cell renal cell carcinoma (ccRCC), gastric cancer (GC), pancreatic cancer (PC), hepatocellular carcinoma (HCC), glioma, and osteoarthritis (OA). CASC19 provides a new strategy for targeted therapy, and the regulatory networks of CASC19 expression levels play a key role in the occurrence and development of tumors and diseases. In addition, the expression level of CASC19 has predictive roles in the prognosis of some tumors and diseases, which has major implications for clinical diagnoses and treatments. CASC19 is also unique in that it is a key gene affecting the efficacy of RT in many tumors, and its expression level plays a decisive role in improving the success rate of treatments. Further research is required to determine the precise process by which CASC19 causes changes in diseased cells in some tumors and diseases.


Assuntos
Neoplasias , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Animais
3.
Curr Med Chem ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38333975

RESUMO

Given the threat of ever-growing cancer morbidity, it is a cutting-edge frontier for multiple disciplines to apply nanotechnology in cancer therapy. Nanomedicine is now perpetually influencing the diagnosis and treatment of cancer. Meanwhile, tumorigenesis and cancer progression are intimately associated with inflammation. Inflammation can implicate in various tumor progression via the same or different pathways. Therefore, current nanomedicines exhibit tumor-suppressing function through inflammatory pathways. At present, the comprehensive understanding and research on the mechanism of various nanoparticles in cancer treatment are still in progress. In this review, we summarized the applications of nanomedicine in tumor-targeting inflammatory pathways, suggesting that nanoparticles could be a budding star for cancer therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA