Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Adv Res ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582300

RESUMO

INTRODUCTION: Inflammatory bowel disease (IBD) is a global disease with limited therapy. It is reported that sedanolide exerts anti-oxidative and anti-inflammatory effects as a natural phthalide, but its effects on IBD remain unclear. OBJECTIVES: In this study, we investigated the impacts of sedanolide on dextran sodium sulfate (DSS)-induced colitis in mice. METHODS: The mice were administered sedanolide or vehicle followed by DSS administration, after which colitis symptoms, inflammation levels, and intestinal barrier function were evaluated. Transcriptome analysis, 16S rRNA sequencing, and targeted metabolomics analysis of bile acids and lipids were performed. RESULTS: Sedanolide protected mice from DSS-induced colitis, suppressed the inflammation, restored the weakened epithelial barrier, and modified the gut microbiota by decreasing bile salt hydrolase (BSH)-expressing bacteria. The downregulation of BSH activity by sedanolide increased the ratio of conjugated/unconjugated bile acids (BAs), thereby inhibiting the intestinal farnesoid X receptor (FXR) pathway. The roles of the FXR pathway and gut microbiota were verified using an intestinal FXR-specific agonist (fexaramine) and germ-free mice, respectively. Furthermore, we identified the key effector ceramide, which is regulated by sphingomyelin phosphodiesterase 3 (SMPD3). The protective effects of ceramide (d18:1/16:0) against inflammation and the gut barrier were demonstrated in vitro using the human cell line Caco-2. CONCLUSION: Sedanolide could reshape the intestinal flora and influence BA composition, thus inhibiting the FXR-SMPD3 pathway to stimulate the synthesis of ceramide, which ultimately alleviated DSS-induced colitis in mice. Overall, our research revealed the protective effects of sedanolide against DSS-induced colitis in mice, which indicated that sedanolide may be a clinical treatment for colitis. Additionally, the key lipid ceramide (d18:1/16:0) was shown to mediate the protective effects of sedanolide, providing new insight into the associations between colitis and lipid metabolites.

2.
Food Funct ; 15(7): 3692-3708, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38488110

RESUMO

Pediococcus pentosaceus Li05 (Li05) has demonstrated potential benefits in various intestinal and liver diseases, but its potential and mechanisms in relieving diarrhea have not been understood. The objective of this research was to examine the effects and mechanisms of Li05 in rats with diarrhea-predominant irritable bowel syndrome (IBS-D) induced by wrap restrain stress (WRS) and 4% acetic acid. The results demonstrated that Li05 effectively alleviated weight loss, visceral sensitivity and diarrhea in rats with IBS-D. It also improved intestinal and systemic inflammation by reducing the levels of chemokines and proinflammatory cytokines (GRO/KC, RANTES, IL-1ß, IL-7, and IL-18). The 5-hydroxytryptamine (5-HT) signaling pathway is involved in regulating excessive intestinal motility and secretion in IBS-D. Li05 effectively reduced the expression levels of the 5-HT3B receptor (5-HT3BR) (p < 0.01) in the intestine. Additionally, Li05 intervention had a regulatory effect on the gut composition, with a decrease in the abundance of [Ruminococcus] gauvreauii group, Dubosiella, Erysipelatoclostridium and Blautia, and an increase in the abundance of Alloprevotella, Anaerotruncus and Mucispirillum. Furthermore, Li05 induced significant changes in fatty acid and amino acid metabolism in the gut of rats with IBS-D. These findings indicate that Li05 exhibits an effective improvement in IBS-D symptoms by reducing inflammation and modulating gut microbiota and metabolism. Based on the above results, Li05 holds promise as a potential probiotic for managing IBS-D.


Assuntos
Síndrome do Intestino Irritável , Ratos , Animais , Síndrome do Intestino Irritável/tratamento farmacológico , Pediococcus pentosaceus , Diarreia/tratamento farmacológico , Inflamação , Transdução de Sinais , Serotonina
3.
Biomed Pharmacother ; 147: 112649, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35051858

RESUMO

Ankyrin repeat domain 22 (ANKRD22) is a nuclear-encoded mitochondrial membrane protein that is highly expressed in normal gastric mucosal epithelial cells and activated macrophages. As a regulator of mitochondrial Ca2+, ANKRD22 could help repair damaged gastric mucosa by promoting the mobilization of LGR5+ gastric epithelial cells via the upregulation of Wnt/ß-catenin pathway activity in a mouse model. Furthermore, the inhibition of ANKRD22 alleviated the macrophage activation-mediated inflammatory response by reducing the phosphorylation of nuclear factor of activated T cells (NFAT). ANKRD22 plays a significant role in the repair of gastric mucosal damage and may become an ideal novel target for the treatment of gastric mucosal injury. However, there is no systematic introduction to ANKRD22 targeting. Therefore, we wrote this review to elaborate the functional mechanism of ANKRD22 in gastric mucosal injury and to analyze its potential application value in clinical therapy.


Assuntos
Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/lesões , Mucosa Gástrica/patologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/farmacologia , Animais , Biomarcadores , Canais de Cálcio/efeitos dos fármacos , Regulação para Baixo , Células Epiteliais/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Camundongos , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA