Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 10: 1132259, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234240

RESUMO

A patient complaining of edema of the face and lower extremities was admitted to the nephrology department for nephrotic syndrome. Renal biopsy revealed findings of minimal change disease (MCD). Thyroid ultrasound showed a hypoechoic 16 × 13 mm nodule in the right lobe, suspicious of malignancy. Later, total thyroidectomy confirmed the diagnosis of papillary thyroid carcinoma (PTC). After surgery, MCD remitted rapidly and completely, strongly suggesting the diagnosis of MCD secondary to PTC. We report here the first adult case of the paraneoplastic finding of MCD secondary to PTC. Additionally, we discuss the possible role of the BRAF gene in the pathophysiology of PTC-associated MCD in this case and highlight the importance of tumor screening.

2.
Cells ; 9(3)2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155953

RESUMO

Emerging evidence indicates that in myelodysplastic syndromes (MDS), the bone marrow (BM) microenvironment may also contribute to the ineffective, malignant haematopoiesis in addition to the intrinsic abnormalities of haematopoietic stem precursor cells (HSPCs). The BM microenvironment influences malignant haematopoiesis through indirect mechanisms, but the processes by which the BM microenvironment directly contributes to MDS initiation and progression have not yet been elucidated. Our previous data showed that BM-derived stromal cells (BMSCs) from MDS patients have an abnormal expression of focal adhesion kinase (FAK). In this study, we characterise the morpho-phenotypic features and the functional alterations of BMSCs from MDS patients and in FAK knock-downed HS-5 cells. The decreased expression of FAK or its phosphorylated form in BMSCs from low-risk (LR) MDS directly correlates with BMSCs' functional deficiency and is associated with a reduced level of haemoglobin. The downregulation of FAK in HS-5 cells alters their morphology, proliferation, and differentiation capabilities and impairs the expression of several adhesion molecules. In addition, we examine the CD34+ healthy donor (HD)-derived HSPCs' properties when co-cultured with FAK-deficient BMSCs. Both abnormal proliferation and the impaired erythroid differentiation capacity of HD-HSPCs were observed. Together, these results demonstrate that stromal adhesion mechanisms mediated by FAK are crucial for regulating HSPCs' homeostasis.


Assuntos
Medula Óssea/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/deficiência , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Diferenciação Celular , Proliferação de Células , Células-Tronco Hematopoéticas/citologia , Homeostase , Humanos , Células-Tronco Mesenquimais/metabolismo
3.
Stem Cells Dev ; 26(22): 1637-1647, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28911263

RESUMO

Embryonic stem cells typically show properties of long-term self-renewal and lack of differentiation. When appropriately stimulated, they are able to differentiate into all cell lineages, and lose their self-renewal characteristics. These properties are controlled by a series of genes encoding several transcription factors, including OCT4, the product of POU5F1 gene. OCT4 is expressed in germ cell tumors but also aberrantly in cancers developing in differentiated tissues. In a previous study, we observed a high expression of OCT4 in acute myeloid cell lines and primary cells, regardless of the acute myeloid leukemia (AML) subtype. In this study, we investigated the putative oncogenic role of OCT4 in proliferation and differentiation arrest. OCT4 expression was assessed in a panel of myeloid cell lines, together with clonogenic and proliferation properties, before and after differentiation in the presence of retinoic acid (RA). Same experiments were performed under short hairpin RNA (shRNA)-mediated OCT4 inhibition. In the presence of RA, we observed a decrease of OCT4 expression, associated with a loss of clonogenic and proliferation capacities, cell cycle arrest, and upregulation of p21, in HL60, NB4, KASUMI, and Me-1 cell lines. This effect was absent in the KG1a cell line, which did not differentiate. Downregulation of OCT4 by shRNA resulted in the same pattern of differentiation and loss of proliferation. Although KG1a did not differentiate, a decrease in proliferation was observed. Our findings suggest that OCT4 is implicated in the differentiation arrest at least in some types of AML, and that it also plays a role in cell proliferation through different oncogenic mechanisms. OCT4 might be a potential new target for antileukemic treatments.


Assuntos
Leucemia Mieloide Aguda/patologia , Fator 3 de Transcrição de Octâmero/metabolismo , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica , Regulação para Baixo/efeitos dos fármacos , Genes Homeobox/efeitos dos fármacos , Humanos , Tretinoína/farmacologia
4.
Front Oncol ; 7: 164, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28848706

RESUMO

The pathogenic role of mesenchymal stromal cells (MSCs) in myelodysplastic syndromes (MDS) development and progression has been investigated by numerous studies, yet, it remains controversial in some aspects (1, 2). In the present study, we found distinct features of MSCs from low-risk (LR)-MDS stromal microenvironment as compared to those from healthy subjects. At the molecular level, focal adhesion kinase, a key tyrosine kinase in control of cell proliferation, survival, and adhesion process, was found profoundly suppressed in expression and activation in LR-MDS MSC. At a functional level, LR-MDS MSCs showed impaired growth and clonogenic capacity, which were independent of cellular senescence and apoptosis. The pro-adipogenic differentiation and attenuated osteogenic capacity along with reduced SDF-1 expression could be involved in creating an unfavorable microenvironment for hematopoiesis. In conclusion, our experiments support the theory that the stromal microenvironment is fundamentally altered in LR-MDS, and these preliminary data offer a new perspective on LR-MDS pathophysiology.

5.
Front Oncol ; 6: 172, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27489795

RESUMO

Myelodysplastic syndrome (MDS) is characterized by an ineffective hematopoiesis with production of aberrant clones and a high cell apoptosis rate in bone marrow (BM). Macrophages are in charge of phagocytosis. Innate Immune cells and specific T cells are in charge of immunosurveillance. Little is known on BM cell recruitment and activity as BM aspirate is frequently contaminated with peripheral blood. But evidences suggest an active role of immune cells in protection against MDS and secondary leukemia. BM CD8(+) CD28(-) CD57(+) T cells are directly cytotoxic and have a distinct cytokine signature in MDS, producing TNF-α, IL-6, CCL3, CCL4, IL-1RA, TNFα, FAS-L, TRAIL, and so on. These tools promote apoptosis of aberrant cells. On the other hand, they also increase MDS-related cytopenia and myelofibrosis together with TGFß. IL-32 produced by stromal cells amplifies NK cytotoxicity but also the vicious circle of TNFα production. Myeloid-derived suppressing cells (MDSC) are increased in MDS and have ambiguous role in protection/progression of the diseases. CD33 is expressed on hematopoietic stem cells on MDS and might be a potential target for biotherapy. MDS also has impact on immunity and can favor chronic inflammation and emergence of autoimmune disorders. BM is the site of hematopoiesis and thus contains a complex population of cells at different stages of differentiation from stem cells and early engaged precursors up to almost mature cells of each lineage including erythrocytes, megakaryocytes, myelo-monocytic cells (monocyte/macrophage and granulocytes), NK cells, and B cells. Monocytes and B cell finalize their maturation in peripheral tissues or lymph nodes after migration through the blood. On the other hand, T cells develop in thymus and are present in BM only as mature cells, just like other well vascularized tissues. BM precursors have a strong proliferative capacity, which is usually associated with a high risk for genetic errors, cell dysfunction, and consequent cell death. Abnormal cells are prone to destruction through spontaneous apoptosis or because of the immunosurveillance that needs to stay highly vigilant. High rates of proliferation or differentiation failures lead to a high rate of cell death and massive release of debris to be captured and destroyed (1). Numerous macrophages reside in BM in charge of home-keeping. They have a high capacity of phagocytosis required for clearing all these debris.

6.
J Immunol ; 195(4): 1849-57, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26179902

RESUMO

Graft-versus-host disease (GVHD) is the major complication after allogeneic bone marrow transplantation. Valproic acid (VPA) was described as a histone deacetylase inhibitor that had anti-inflammatory effects and reduced the production of proinflammatory cytokines in experimental autoimmune disease models. Using well-characterized mouse models of MHC-mismatched transplantation, we studied the effects of VPA on GVHD severity and graft-versus-leukemia (GVL) activity. Administration of VPA significantly attenuated the clinical severity of GVHD, the histopathology of GVHD-involved organs, and the overall mortality from GVHD. VPA downregulated Th1 and Th17 cell responses and cytokine production in vitro and in vivo, whereas its effect on GVHD was regulatory T cell independent. The effect of VPA was related to its ability to directly reduce the activity of Akt, an important regulator of T cell immune responses. Importantly, when mice received lethal doses of host-type acute leukemia cells, administration of VPA did not impair GVL activity and resulted in significantly improved leukemia-free survival. These findings reveal a unique role for VPA as a histone deacetylase inhibitor in reducing the donor CD4(+) T cells that contribute to GVHD, which may provide a strategy to reduce GVHD while preserving the GVL effect.


Assuntos
Doença Enxerto-Hospedeiro/etiologia , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Ácido Valproico/farmacologia , Animais , Transplante de Medula Óssea/efeitos adversos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Modelos Animais de Doenças , Feminino , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/metabolismo , Doença Enxerto-Hospedeiro/patologia , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/imunologia , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Índice de Gravidade de Doença , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Células Th1/citologia , Células Th1/metabolismo , Células Th17/citologia , Células Th17/metabolismo , Transplante Homólogo , Ácido Valproico/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA