Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202407975, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38818660

RESUMO

The bonding effects between 3d transition-metal single sites and supports originate from crystal field stabilization energy (CFSE). The 3d transition-metal atoms of the spontaneous geometrical distortions, that is the Jahn-Teller effect, can alter CFSE, thereby leading to the Irving-Williams series. However, engineering single-atom sites (SASs) using the Irving-Williams series as an ideal guideline has not been reported to date. Herein, alkynyl-linked covalent phenanthroline frameworks (CPFs) with phenanthroline units are developed to anchor the desired 3d single metal ions from d5 to d10 (Mn2+, Fe3+, Co2+, Ni2+, Cu2+, and Zn2+). The Irving-Williams series was employed to accurately predict the bonding effects between 3d transition-metal atoms and phenanthroline units. To verify this, theoretical calculations and experimental results reveal that Cu-SASs/CPFs exhibits higher stability and faster charge-transfer efficiency, far surpassing other metal-SASs/CPFs. As expected, Cu-SASs/CPFs demonstrates a high photoreduction of CO2-to-CO activity (~30.3 µmol·g-1·h-1) and an exceptional photooxidation of CH3CHO-to-CH3COOH activity (~24.7 µmol·g-1·h-1). Interestingly, the generated *O2- is derived from the process of CO2 reduction, thereby triggering a CH3CHO oxidation reaction. This work provides a novel design concept for designing SASs by the Irving-Williams to regulate the catalytic performances.

2.
ACS Appl Mater Interfaces ; 14(35): 40093-40101, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-35833831

RESUMO

Halide perovskites (HPs) with marvelous optical and electrical properties are regarded as one of the competitive candidates for building next-generation photodetectors (PDs). However, combining their excellent properties with satisfactory long-term robustness is still challenging, ultimately limiting the practical applications of HP-based PDs. Herein, a high vacuum deposition system is employed to fabricate flexible self-powered PDs with a ZnO/CsPbBr3/γ-CuI structure, which shows excellent stability and outstanding performance in weak light detection. Benefiting from the improved crystallinity and optimized device structure, a high detectivity of 8.1 × 1013 Jones and a rapid response speed (rise/decay time of 3.9/1.8 µs) are obtained in this self-powered device. Furthermore, the unencapsulated device exhibits intriguing environmental stability and mechanical flexibility. The photocurrent remains unchanged after 7000 s of continuous operation or 100 bending cycles. Furthermore, a 15 × 15 PD array is fabricated as an image sensor. A high contrast image of the target object can be obtained owing to the high sensitivity and uniformity of the self-powered PDs. These results demonstrate the feasibility and practicality of the ZnO/CsPbBr3/γ-CuI heterojunction for applications in weak light detection and image formation.

3.
RSC Adv ; 12(28): 17706-17714, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35765332

RESUMO

Two-dimensional (2D) layered materials have attracted intensive attention in recent years due to their rich physical properties, and shown great promise due to their low power consumption and high integration density in integrated electronics. However, mostly limited to mechanical exfoliation, large scale preparation of the 2D materials for application is still challenging. Herein, quasi-2D α-molybdenum oxide (α-MoO3) thin film with an area larger than 100 cm2 was fabricated by magnetron sputtering, which is compatible with modern semiconductor industry. An all-solid-state synaptic transistor based on this α-MoO3 thin film is designed and fabricated. Interestingly, by proton intercalation/deintercalation, the α-MoO3 channel shows a reversible conductance modulation of about four orders. Several indispensable synaptic behaviors, such as potentiation/depression and short-term/long-term plasticity, are successfully demonstrated in this synaptic device. In addition, multilevel data storage has been achieved. Supervised pattern recognition with high recognition accuracy is demonstrated in a three-layer artificial neural network constructed on this α-MoO3 based synaptic transistor. This work can pave the way for large scale production of the α-MoO3 thin film for practical application in intelligent devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA