Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 15(5)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38790176

RESUMO

Krascheninnikovia ewersmanniana is a dominant desert shrub in Xinjiang, China, with high economic and ecological value. However, molecular systematics research on K. ewersmanniana is lacking. To resolve the genetic composition of K. ewersmanniana within Amaranthaceae and its systematic relationship with related genera, we used a second-generation Illumina sequencing system to detect the chloroplast genome of K. ewersmanniana and analyze its assembly, annotation, and phylogenetics. Total length of the chloroplast genome of K. ewersmanniana reached 152,287 bp, with 84 protein-coding genes, 36 tRNAs, and eight rRNAs. Codon usage analysis showed the majority of codons ending with base A/U. Mononucleotide repeats were the most common (85.42%) of the four identified simple sequence repeats. A comparison with chloroplast genomes of six other Amaranthaceae species indicated contraction and expansion of the inverted repeat boundary region in K. ewersmanniana, with some genes (rps19, ndhF, ycf1) differing in length and distribution. Among the seven species, the variation in non-coding regions was greater. Phylogenetic analysis revealed Krascheninnikovia ceratoides, Dysphania ambrosioides, Dysphania pumilio, and Dysphania botrys to have a close monophyletic relationship. By sequencing the K. ewersmanniana chloroplast genome, this research resolves the relatedness among 35 Amaranthaceae species, providing molecular insights for germplasm utilization, and theoretical support for studying evolutionary relationships.


Assuntos
Amaranthaceae , Genoma de Cloroplastos , Filogenia , Amaranthaceae/genética , Uso do Códon , Repetições de Microssatélites/genética , Evolução Molecular , Cloroplastos/genética , China , Anotação de Sequência Molecular
2.
Front Plant Sci ; 14: 1266797, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38155854

RESUMO

Introduction: Prunus pedunculata (Prunoideae: Rosaceae), a relic shrub with strong resistance and multiple application values, is endangered in China. Extensive research had been devoted to gene expression, molecular markers, plastid genome analysis, and genetic background investigations of P. pedunculata. However, the mitochondrial genome of this species has not been systematically described, owing to the complexity of the plant mitogenome. Methods: In the present research, the complete mitochondrial genome of P. pedunculata was assembled, annotated, and characterized. The genomic features, gene content and repetitive sequences were analyzed. The genomic variation and phylogenetic analysis have been extensively enumerated. Results and discussion: The P. pedunculata mitogenome is a circular molecule with a total length of 405,855 bp and a GC content of 45.63%, which are the smallest size and highest GC content among the known Prunus mitochondrial genomes. The mitogenome of P. pedunculata encodes 62 genes, including 34 unique protein-coding genes (PCGs, excluding three possible pseudogenes), three ribosomal RNA genes, and 19 transfer RNA genes. The mitogenome is rich in repetitive sequences, counting 112 simple sequence repeats, 15 tandem repeats, and 50 interspersed repetitive sequences, with a total repeat length of 11,793 bp, accounting for 2.91% of the complete genome. Leucine (Leu) was a predominant amino acid in PCGs, with a frequency of 10.67%, whereas cysteine (Cys) and tryptophan (Trp) were the least adopted. The most frequently used codon was UUU (Phe), with a relative synonymous codon usage (RSCU) value of 1.12. Selective pressure was calculated based on 20 shared PCGs in the mitogenomes of the 32 species, most of which were subjected to purifying selection (Ka/Ks < 1), whereas ccmC and ccmFn underwent positive selection. A total of 262 potential RNA editing sites in 26 PCGs were identified. Furthermore, 56 chloroplast-derived fragments were ascertained in the mitogenome, ranging from 30 to 858 bp, and were mainly located across IGS (intergenic spacer) regions or rRNA genes. These findings verify the occurrence of intracellular gene transfer events from the chloroplast to the mitochondria. Furthermore, the phylogenetic relationship of P. pedunculata was supported by the mitogenome data of 30 other taxa of the Rosaceae family. Understanding the mitochondrial genome characteristics of P. pedunculata is of great importance to promote comprehension of its genetic background and this study provides a basis for the genetic breeding of Prunus.

3.
Genes (Basel) ; 14(6)2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37372469

RESUMO

Corethrodendron fruticosum is an endemic forage grasses in China with high ecological value. In this study, the complete chloroplast genome of C. fruticosum was sequenced using Illumina paired-end sequencing. The C. fruticosum chloroplast genome was 123,100 bp and comprised 105 genes, including 74 protein-coding genes, 4 rRNA-coding genes, and 27 tRNA-coding genes. The genome had a GC content of 34.53%, with 50 repetitive sequences and 63 simple repeat repetitive sequences that did not contain reverse repeats. The simple repeats included 45 single-nucleotide repeats, which accounted for the highest proportion and primarily comprised A/T repeats. A comparative analysis of C. fruticosum, C. multijugum, and four Hedysarum species revealed that the six genomes were highly conserved, with differentials primarily located in the conserved non-coding regions. Moreover, the accD and clpP genes in the coding regions exhibited high nucleotide variability. Accordingly, these genes may serve as molecular markers for the classification and phylogenetic analysis of Corethrodendron species. Phylogenetic analysis further revealed that C. fruticosum and C. multijugum appeared in different clades than the four Hedysarum species. The newly sequenced chloroplast genome provides further insights into the phylogenetic position of C. fruticosum, which is useful for the classification and identification of Corethrodendron.


Assuntos
Fabaceae , Genoma de Cloroplastos , Filogenia , Fabaceae/genética , China
4.
Plants (Basel) ; 11(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36145809

RESUMO

Medicago ruthenica, a wild legume forage widely distributed in the Eurasian steppe, demonstrates high genetic and phenotypic variation. M. ruthenica with a purely yellow flower (YFM), differing from the general phenotype of M. ruthenica with a purple flower (PFM), was recently discovered. The similar characteristics of YFM with Medicago falcata have led to conflicting opinions on its taxonomy using traditional morphological methods. The lack of chemotaxonomy information about M. ruthenica species and the unclear flower coloration mechanisms have hampered their study. Here, we investigated M. ruthenica using targeted metabolomics based on the chemotaxonomy method and elaborated the floral coloration mechanisms using transcriptomics. The identified flavonoids were the same types, but there were different contents in YFM and PFM, especially the contents of cyanidin-3-O-glucoside (C3G), an anthocyanin that causes the purple-reddish color of flowers. The over-accumulation of C3G in PFM was 1,770 times more than YFM. Nineteen anthocyanin-related genes were downregulated in YFM compared with their expression in PFM. Thus, YFM could be defined as a variety of M. ruthenica rather than a different species. The loss of purple flower coloration in YFM was attributed to the downregulation of these genes, resulting in reduced C3G accumulation. The taxonomic characteristics and molecular and physiological characteristics of this species will contribute to further research on other species with similar external morphologies.

5.
Genes (Basel) ; 13(8)2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-36011336

RESUMO

Leymus is a perennial genus that belongs to the tribe Triticeae (Poaceae) which has an adaptive capacity to ecological conditions and strong resistance to cold, drought, and salinity. Most Leymus species are fine herbs that can be used for agriculture, conservation, and landscaping. Due to confusion taxonomy within genera, the complete chloroplast (cp) genome of 13 Leymus species was sequenced, assembled, and compared with those of three other previously published Leymus species (Leymus condensatus, Leymus angustus, and Leymus mollis) to clarify the issue. Overall, the whole cp genome size ranged between 135,057 (L. condensatus) and 136,906 bp (Leymus coreanus) and showed a typical quadripartite structure. All studied species had 129 genes, including 83 protein-coding genes, 38 transfer RNAs, and 8 ribosomal RNAs. In total, 800 tandem repeats and 707 SSR loci were detected, most of which were distributed in the large single-copy region, followed by the inverted repeat (IR) and small single-copy regions. The sequence identity of all sequences was highly similar, especially concerning the protein-coding and IR regions; in particular, the protein-coding regions were significantly similar to those in the IR regions, regardless of small sequence differences in the whole cp genome. Moreover, the coding regions were more conserved than the non-coding regions. Comparisons of the IR boundaries showed that IR contraction and expansion events were reflected in different locations of rpl22, rps19, ndhH, and psbA genes. The close phylogenetic relationship of Leymus and Psathyrostachys indicated that Psathyrostachys possibly is the donor of the Ns genome sequence identified in Leymus. Altogether, the complete cp genome sequence of Leymus will lay a solid foundation for future population genetics and phylogeography studies, as well as for the analysis of the evolution of economically valuable plants.


Assuntos
Genoma de Cloroplastos , Tamanho do Genoma , Genoma de Cloroplastos/genética , Filogenia , Filogeografia , Poaceae/genética
6.
Plant Physiol Biochem ; 168: 53-61, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34619598

RESUMO

Drought is a major environmental stress that affects plant growth, development, and productivity. Medicago ruthenica, a leguminous forage, has garnered attention owing to its resistance to abiotic stress. The purpose of the current study was to explore genes conferring drought resistance to M. ruthenica. MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression in plants and are associated with developmental plasticity and abiotic/biotic stress responses. Here, high-throughput small RNA, mRNA, and degradome sequencing analyses were performed to analyze miRNAs and their potential target genes in the leaves of M. ruthenica seedlings under osmotic stress conditions. In total, 591 miRNAs were identified. A comparison of the expression levels showed that 15 miRNAs (14 upregulated and 1 downregulated) were significantly differentially expressed following PEG6000 treatment compared with those in the control (0 h). Most miRNAs are highly conserved between M. ruthenica and Medicago truncatula. Using TargetFinder, 11 target genes were predicted; the expression of these target genes negatively correlated with that of five miRNAs related to osmotic stress response. miR319 downregulated the expression of teosinte branched/cycloidea/proliferating cell factor 4 (TCP4), which encodes plant-specific transcription factors, more significantly in the leaves than in the roots. These results were confirmed using quantitative real-time polymerase chain reaction, northern blotting, RLM 5'RACE, and a Nicotiana benthamiana transient expression system. The miR319-TCP4 module may act as a homeostasis factor in M. ruthenica roots following drought injury, and it is conserved among plant species.


Assuntos
Medicago truncatula , MicroRNAs , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Medicago truncatula/genética , MicroRNAs/genética , Pressão Osmótica , RNA de Plantas , Plântula/genética , Estresse Fisiológico/genética
7.
Front Genet ; 12: 705482, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34422006

RESUMO

Astragalus is the largest genus in Leguminosae. Several molecular studies have investigated the potential adulterants of the species within this genus; nonetheless, the evolutionary relationships among these species remain unclear. Herein, we sequenced and annotated the complete chloroplast genomes of three Astragalus species-Astragalus adsurgens, Astragalus mongholicus var. dahuricus, and Astragalus melilotoides using next-generation sequencing technology and plastid genome annotator (PGA) tool. All species belonged to the inverted repeat lacking clade (IRLC) and had similar sequences concerning gene contents and characteristics. Abundant simple sequence repeat (SSR) loci were detected, with single-nucleotide repeats accounting for the highest proportion of SSRs, most of which were A/T homopolymers. Using Astragalus membranaceus var. membranaceus as reference, the divergence was evident in most non-coding regions of the complete chloroplast genomes of these species. Seven genes (atpB, psbD, rpoB, rpoC1, trnV, rrn16, and rrn23) showed high nucleotide variability (Pi), and could be used as DNA barcodes for Astragalus sp. cemA and rpl33 were found undergoing positive selection by the section patterns in the coded protein. Phylogenetic analysis showed that Astragalus is a monophyletic group closely related to the genus Oxytropis within the tribe Galegeae. The newly sequenced chloroplast genomes provide insight into the unresolved evolutionary relationships within Astragalus spp. and are expected to contribute to species identification.

8.
Ecol Evol ; 10(1): 543-556, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31988740

RESUMO

Cuticular wax covering the leaf surface plays important roles in protecting plants from biotic and abiotic stresses. Understanding the way in which plant leaf cuticles reflect their growing environment could give an insight into plant resilience to future climate change. Here, we analyzed the variations of cuticular waxes among 59 populations of Leymus chinensis in a common garden experiment, aiming to verify how environmental conditions influence the chemical profiles of cuticular waxes. In total, eight cuticular wax classes were identified, including fatty acids, aldehydes, primary alcohols, alkanes, secondary alcohols, ketones, ß-diketones, and alkylresorcinols, with ß-diketones the predominant compounds in all populations (averaged 67.36% across all populations). Great intraspecific trait variations (ITV) were observed for total wax coverage, wax compositions, and the relative abundance of homologues within each wax class. Cluster analysis based on wax characteristics could separate 59 populations into different clades. However, the populations could not be separated according to their original longitudes, latitudes, annual temperature, or annual precipitation. Redundancy analysis showed that latitude, arid index, and the precipitation from June to August were the most important parameters contributing to the variations of the amount of total wax coverage and wax composition and the relative abundance of wax classes. Pearson's correlation analysis further indicated that the relative abundance of wax classes, homologues in each wax class, and even isomers of certain compound differed in their responses to environmental factors. These results suggested that wax deposition patterns of L. chinensis populations formed during adaptations to their long-term growing environments could inherit in their progenies and exhibit such inheritance even these progenies were exported to new environments.

9.
Sci Rep ; 8(1): 17912, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30559460

RESUMO

Sheepgrass (Leymus chinensis) is one of the dominant grass species present on typical steppes of the Inner Mongolia Plateau. However, L. chinensis has developed a dwarfing phenotype in response to the stressful habitat in grasslands that are severely degraded due to heavy grazing. The lack of transcriptomic and genomic information has prohibited the understanding of the transgenerational effect on physiological alterations in clonal L. chinensis at the molecular level in response to livestock grazing. To solve this problem, transcriptomic information from the leaves of clonal L. chinensis obtained from overgrazed (GR) and non-grazed (NG) grasslands was studied using a paired-end Illumina HiSeq 2500 sequencing platform. First, despite the influence of grazing being absent during the growth of clonal offspring in our hydroponic experiment, compared with those from the NG group, clonal L. chinensis from the GR group exhibited significant dwarf-type morphological traits. A total of 116,356 unigenes were subsequently generated and assembled de novo, of which 55,541 could be annotated to homologous matches in the NCBI non-redundant (Nr), Swiss-Prot, Clusters of Orthologous Groups (COG), gene ontology (GO), or Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The expression of 3,341 unigenes significantly differed between the GR group and the NG group with an absolute value of Log2 ratio ≥ 1. The altered expression of genes involved in defence and immune responses, pathogenic resistance and cell development indicates that livestock grazing induces a transgenerational effect on the growth inhibition of clonal L. chinensis. The results of the present study will provide important large-scale transcriptomic information on L. chinensis. Furthermore, the results facilitated our investigation of grazing-induced transgenerational effects on both the morphological and physiological characteristics of L. chinensis at the molecular levels.


Assuntos
Folhas de Planta/genética , Folhas de Planta/fisiologia , Poaceae/genética , Poaceae/fisiologia , Transcriptoma/genética , China , Bases de Dados de Proteínas , Ecossistema , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Anotação de Sequência Molecular/métodos
10.
BMC Plant Biol ; 18(1): 81, 2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29739327

RESUMO

BACKGROUND: This study was designed to reveal potential molecular mechanisms of long-term overgrazing-induced dwarfism in sheepgrass (Leymus chinensis). METHODS: An electrospray ionisation mass spectrometry system was used to generate proteomic data of dwarf sheepgrass from a long-term overgrazed rangeland and normal sheepgrass from a long-term enclosed rangeland. Differentially expressed proteins (DEPs) between dwarf and normal sheepgrass were identified, after which their potential functions and interactions with each other were predicted. The expression of key DEPs was confirmed by high-performance liquid chromatography mass spectrometry (HPLC-MS) using a multiple reaction monitoring method. RESULTS: Compared with normal sheepgrass, a total of 51 upregulated and 53 downregulated proteins were identified in dwarf sheepgrass. The amino acids biosynthesis pathway was differentially enriched between the two conditions presenting DEPs, such as SAT5_ARATH and DAPA_MAIZE. The protein-protein interaction (PPI) network revealed a possible interaction between RPOB2_LEPTE, A0A023H9M8_9STRA, ATPB_DIOEL, RBL_AMOTI and DNAK_GRATL. Four modules were also extracted from the PPI network. The HPLC-MS analysis confirmed the upregulation and downregulation of ATPB_DIOEL and DNAK_GRATL, respectively in dwarf samples compared with in the controls. CONCLUSIONS: The upregulated ATPB_DIOEL and downregulated DNAK_GRATL as well as proteins that interact with them, such as RPOB2_LEPTE, A0A023H9M8_9STRA and RBL_AMOTI, may be associated with the long-term overgrazing-induced dwarfism in sheepgrass.


Assuntos
Proteínas de Plantas/metabolismo , Poaceae/crescimento & desenvolvimento , Aminoácidos/metabolismo , Criação de Animais Domésticos , Cromatografia Líquida de Alta Pressão , Regulação da Expressão Gênica de Plantas , Espectrometria de Massas , Redes e Vias Metabólicas , Proteínas de Plantas/fisiologia , Poaceae/metabolismo , Poaceae/fisiologia , Proteômica , Espectrometria de Massas por Ionização por Electrospray
11.
Front Plant Sci ; 8: 419, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28484469

RESUMO

Previous studies of transgenerational plasticity have demonstrated that long-term overgrazing experienced by Leymus chinensis, an ecologically dominant, rhizomatous grass species in eastern Eurasian temperate grassland, significantly affects its clonal growth in subsequent generations. However, there is a dearth of information on the reasons underlying this overgrazing-induced memory effect in plant morphological plasticity. We characterized the relationship between a dwarf phenotype and photosynthesis function decline of L. chinensis from the perspective of leaf photosynthesis by using both field measurement and rhizome buds culture cultivated in a greenhouse. Leaf photosynthetic functions (net photosynthetic rate, stomatal conductance, intercellular carbon dioxide concentration, and transpiration rate) were significantly decreased in smaller L. chinensis individuals that were induced to have a dwarf phenotype by being heavily grazed in the field. This decreased photosynthetic function was maintained a generation after greenhouse tests in which grazing was excluded. Both the response of L. chinensis morphological traits and photosynthetic functions in greenhouse were deceased relative to those in the field experiment. Further, there were significant decreases in leaf chlorophyll content and Rubisco enzyme activities of leaves between bud-cultured dwarf and non-dwarf L. chinensis in the greenhouse. Moreover, gene expression patterns showed that the bud-cultured dwarf L. chinensis significantly down-regulated (by 1.86- to 5.33-fold) a series of key genes that regulate photosynthetic efficiency, stomata opening, and chloroplast development compared with the non-dwarf L. chinensis. This is among the first studies revealing a linkage between long-term overgrazing affecting the transgenerational morphological plasticity of clonal plants and physiologically adaptive photosynthesis function. Overall, clonal transgenerational effects in L. chinensis phenotypic traits heavily involve photosynthetic plasticity.

12.
Plant Physiol ; 173(2): 1342-1354, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27999084

RESUMO

Ca2+ is absorbed by roots and transported upward through the xylem to the apoplastic space of the leaf, after which it is deposited into the leaf cell. In Arabidopsis (Arabidopsis thaliana), the tonoplast-localized Ca2+/H+ transporters CATION EXCHANGER1 (CAX1) and CAX3 sequester Ca2+ from the cytosol into the vacuole, but it is not known what transporter mediates the initial Ca2+ influx from the apoplast to the cytosol. Here, we report that Arabidopsis CYCLIC NUCLEOTIDE-GATED CHANNEL2 (CNGC2) encodes a protein with Ca2+ influx channel activity and is expressed in the leaf areas surrounding the free endings of minor veins, which is the primary site for Ca2+ unloading from the vasculature and influx into leaf cells. Under hydroponic growth conditions, with 0.1 mm Ca2+, both Arabidopsis cngc2 and cax1cax3 loss-of-function mutants grew normally. Increasing the Ca2+ concentration to 10 mm induced H2O2 accumulation, cell death, and leaf senescence and partially suppressed the hypersensitive response to avirulent pathogens in the mutants but not in the wild type. In vivo apoplastic Ca2+ overaccumulation was found in the leaves of cngc2 and cax1cax3 but not the wild type under the 10 mm Ca2+ condition, as monitored by Oregon Green BAPTA 488 5N, a low-affinity and membrane-impermeable Ca2+ probe. Our results indicate that CNGC2 likely has no direct roles in leaf development or the hypersensitive response but, instead, that CNGC2 could mediate Ca2+ influx into leaf cells. Finally, the in vivo extracellular Ca2+ imaging method developed in this study provides a new tool for investigating Ca2+ dynamics in plant cells.


Assuntos
Arabidopsis/metabolismo , Cálcio/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Folhas de Planta/metabolismo , Antiporters/genética , Antiporters/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cálcio/análise , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Células HEK293 , Humanos , Imagem Molecular/métodos , Mutação , Folhas de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas
13.
Proteome Sci ; 15: 2, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28149202

RESUMO

BACKGROUND: The degradation of the steppe of Inner Mongolia, due to overgrazing, has resulted in ecosystem damage as well as extensive reductions in sheep production. The growth performance of sheep is greatly reduced because of overgrazing, which triggers massive economic losses every year. The liver is an essential organ that has very important roles in multiple functions, such as nutrient metabolism, immunity and others, which are closely related to animal growth. However, to our knowledge, no detailed studies have evaluated hepatic metabolism adaption in sheep due to overgrazing. The molecular mechanisms that underlie these effects remain unclear. METHODS: In the present study, our group applied isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomic analysis to investigate changes in the protein profiles of sheep hepatic tissues when nutrition was reduced due to overgrazing (12.0 sheep/ha), with the goal of characterizing the molecular mechanisms of hepatic metabolism adaption in sheep in an overgrazing condition. RESULTS: The body weight daily gain of sheep was greatly decreased due to overgrazing. Overall, 41 proteins were found to be differentially abundant in the hepatic tissue between a light grazing group and an overgrazing group. Most of the differentially expressed proteins identified are involved in protein metabolism, transcriptional and translational regulation, and immune response. In particular, the altered abundance of kynureninase (KYNU) and HAL (histidine ammonia-lyase) involved in protein metabolic function, integrated with the changes of serum levels of blood urea nitrogen (BUN) and glucose (GLU), suggest that overgrazing triggers a shift in energy resources from carbohydrates to proteins, causing poorer nitrogen utilization efficiency. Altogether, these results suggest that the reductions in animal growth induced by overgrazing are associated with liver proteomic changes, especially the proteins involved in nitrogen compounds metabolism and immunity. CONCLUSIONS: This provides new information that can be used for nutritional supplementation to improve the growth performance of sheep in an overgrazing condition.

14.
PLoS One ; 10(10): e0141055, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26506228

RESUMO

Understanding the mechanism of plant morphological plasticity in response to grazing and clipping of semiarid grassland can provide insight into the process of disturbance-induced decline in grassland productivity. In recent studies there has been controversy regarding two hypotheses: 1) grazing avoidance; and 2) growth limiting mechanisms of morphological plasticity in response to defoliation. However, the experimental evidence presented for the memory response to grazing and clipping of plants has been poorly reported. This paper reports on two experiments that tested these hypotheses in field and in a controlled environment, respectively. We examined the effects of long-term clipping and grazing on the functional traits and their plasticity for Leymus chinensis (Trin.) Tzvelev (the dominate species) in the typical-steppe grassland of Inner Mongolia, China. There were four main findings from these experiments. (i) The majority of phenotypic traits of L. chinensis tended to significantly miniaturize in response to long-term field clipping and grazing. (ii) The significant response of morphological plasticity with and without grazing was maintained in a hydroponic experiment designed to remove environmental variability, but there was no significant difference in L. chinensis individual size traits for the clipping comparison. (iii) Plasticity indexes of L. chinensis traits in a controlled environment were significantly lower than under field conditions indicating that plants had partial and slight memory effect to long-term grazing. (iv) The allometry of various phenotypic traits, indicated significant trade-offs between leaf and stem allocation with variations in plant size induced by defoliation, which were maintained only under grazing in the hydroponic controlled environment experiment. Taken together, our findings suggest that the morphological plasticity of L. chinensis induced by artificial clipping was different with that by livestock grazing. The miniaturization of plant size in long-term grazed grassland may reflect retained characteristics of dwarf memory for adaptation to long-term grazing by large herbivores.


Assuntos
Desenvolvimento Vegetal , Folhas de Planta/crescimento & desenvolvimento , Poaceae/crescimento & desenvolvimento , Animais , China , Ambiente Controlado , Herbivoria/fisiologia , Rizoma/crescimento & desenvolvimento
15.
PLoS One ; 8(12): e82725, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24324825

RESUMO

The proteome responses to heat stress have not been well understood. In this study, alfalfa (Medicago sativa L. cv. Huaiyin) seedlings were exposed to 25 °C (control) and 40 °C (heat stress) in growth chambers, and leaves were collected at 24, 48 and 72 h after treatment, respectively. The morphological, physiological and proteomic processes were negatively affected under heat stress. Proteins were extracted and separated by two-dimensional polyacrylamide gel electrophoresis (2-DE), and differentially expressed protein spots were identified by mass spectrometry (MS). Totally, 81 differentially expressed proteins were identified successfully by MALDI-TOF/TOF. These proteins were categorized into nine classes: including metabolism, energy, protein synthesis, protein destination/storage, transporters, intracellular traffic, cell structure, signal transduction and disease/defence. Five proteins were further analyzed for mRNA levels. The results of the proteomics analyses provide a better understanding of the molecular basis of heat-stress responses in alfalfa.


Assuntos
Temperatura Alta , Medicago sativa/metabolismo , Proteoma , Proteômica , Estresse Fisiológico , Adaptação Biológica , Regulação da Expressão Gênica de Plantas , Medicago sativa/genética , Medicago sativa/crescimento & desenvolvimento , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , RNA Mensageiro/genética , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
16.
J Am Chem Soc ; 130(36): 11939-44, 2008 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-18710228

RESUMO

A series of mutations was targeted at the methionine residue, Met471, coordinating the Cu(M) site of tyramine beta-monooxygenase (TbetaM). The methionine ligand at Cu(M) is believed to be key to dioxygen activation and the hydroxylation chemistry of the copper monooxygenases. The reactivity and copper binding properties of three TbetaM mutants, Met471Asp, Met471Cys, and Met471His, were examined. All three mutants show similar metal binding affinities to wild type TbetaM in the oxidized enzyme forms. EPR spectroscopy suggests that the Cu(II) coordination geometry is identical to that of the WT enzyme. However, substrate hydroxylation was observed for the reaction of tyramine solely with Met471Cys TbetaM. Met471Cys TbetaM provides the first example of an active mutant directed at the Cu(M) site of this class of hydroxylases. The reactivity and altered kinetics of the Met471Cys mutant further highlight the central role of the methionine residue in the enzyme mechanism. The sole ability of the cysteine residue to support activity among the series of alternate amino acids investigated is relevant to theoretical and biomimetic investigations of dioxygen activation at mononuclear copper centers.


Assuntos
Metionina/metabolismo , Oxigenases de Função Mista/metabolismo , Animais , Catálise , Cobre/metabolismo , Drosophila/enzimologia , Drosophila/genética , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Metionina/química , Metionina/genética , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Mutagênese Sítio-Dirigida , Oxirredução , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA