Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 134(15)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34342350

RESUMO

Recycling to the cell surface requires the scission of tubular membrane intermediates emanating from endosomes. Here, we identify the monotopic membrane protein LPS-induced TNF-activating factor (LITAF) and the related protein cell death involved p53 target 1 (CDIP1) as novel membrane curvature proteins that contribute to recycling tubule scission. Recombinant LITAF supports high membrane curvature, shown by its ability to reduce proteoliposome size. The membrane domains of LITAF and CDIP1 partition strongly into ∼50 nm diameter tubules labelled with the recycling markers Pacsin2, ARF6 and SNX1, and the recycling cargoes MHC class I and CD59. Partitioning of LITAF into tubules is impaired by mutations linked to Charcot Marie Tooth disease type 1C. Meanwhile, co-depletion of LITAF and CDIP1 results in the expansion of tubular recycling compartments and stabilised Rab11 tubules, pointing to a function for LITAF and CDIP1 in membrane scission. Consistent with this, co-depletion of LITAF and CDIP1 impairs integrin recycling and cell migration.


Assuntos
Doença de Charcot-Marie-Tooth , Integrinas , Endossomos , Humanos , Lipopolissacarídeos , Proteínas de Membrana , Proteínas Nucleares , Fatores de Transcrição
2.
Artigo em Inglês | MEDLINE | ID: mdl-32754584

RESUMO

Following peripheral nerve injury, a sequence of events termed Wallerian degeneration (WD) takes place at the distal stump in order to allow the regenerating axons to grow back toward the target organs. Schwann cells (SCs) play a lead role in this by initiating the inflammatory response attracting macrophages and immune cells, as well as producing neurotrophic signals that are essential for nerve regeneration. The majority of existing research has focused on tools to improve regeneration, overlooking the critical degeneration phase. This is also due to the lack of in vitro models recapitulating the features of in vivo WD. In particular, to understand the initial SC response following injury, and to investigate potential interventions, a model that isolates the nerve from other systemic influences is required. Stem cell intervention has been extensively studied as a potential therapeutic intervention to augment regeneration; however, data regarding their role in WD is lacking. Thus, in this study we describe an in vitro model using rat sciatic nerve explants degenerating up to 14 days. Characterisation of this model was performed by gene and protein expression for key markers of WD, in addition to immunohistochemical analysis and electron microscopy. We found changes in keeping with WD in vivo: upregulation of repair program protein CJUN, downregulation of myelin protein genes and subsequent disorganisation and breakdown of myelin structure. As a means of testing the effects of stem cell intervention on WD we established indirect co-cultures of human adipose-derived mesenchymal stem cells (AD-MSC) with the degenerating nerve explants. The stem cell intervention potentiated neurotrophic factors and Cjun expression. We conclude that our in vitro model shares the main features of in vivo WD, and we provide proof of principle on its effectiveness to study experimental approaches for nerve regeneration focused on the events happening during WD.

3.
Structure ; 25(7): 1011-1024.e4, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28602823

RESUMO

SARA and endofin are endosomal adaptor proteins that drive Smad phosphorylation by ligand-activated transforming growth factor ß/bone morphogenetic protein (TGFß/BMP) receptors. We show in this study that SARA and endofin also recruit the tumor supressor HD-PTP, a master regulator of endosomal sorting and ESCRT-dependent receptor downregulation. High-affinity interactions occur between the SARA/endofin N termini, and the conserved hydrophobic region in the HD-PTP Bro1 domain that binds CHMP4/ESCRT-III. CHMP4 engagement is a universal feature of Bro1 proteins, but SARA/endofin binding is specific to HD-PTP. Crystallographic structures of HD-PTPBro1 in complex with SARA, endofin, and three CHMP4 isoforms revealed that all ligands bind similarly to the conserved site but, critically, only SARA/endofin interact at a neighboring pocket unique to HD-PTP. The structures, together with mutagenesis and binding analysis, explain the high affinity and specific binding of SARA/endofin, and why they compete so effectively with CHMP4. Our data invoke models for how endocytic regulation of TGFß/BMP signaling is controlled.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Simulação de Acoplamento Molecular , Proteínas Tirosina Fosfatases não Receptoras/química , Serina Endopeptidases/química , Sítios de Ligação , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ligação Proteica , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Serina Endopeptidases/metabolismo , Fator de Crescimento Transformador beta/metabolismo
4.
EMBO J ; 36(13): 1869-1887, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28483816

RESUMO

Bacterial pathogens often subvert the innate immune system to establish a successful infection. The direct inhibition of downstream components of innate immune pathways is particularly well documented but how bacteria interfere with receptor proximal events is far less well understood. Here, we describe a Toll/interleukin 1 receptor (TIR) domain-containing protein (PumA) of the multi-drug resistant Pseudomonas aeruginosa PA7 strain. We found that PumA is essential for virulence and inhibits NF-κB, a property transferable to non-PumA strain PA14, suggesting no additional factors are needed for PumA function. The TIR domain is able to interact with the Toll-like receptor (TLR) adaptors TIRAP and MyD88, as well as the ubiquitin-associated protein 1 (UBAP1), a component of the endosomal-sorting complex required for transport I (ESCRT-I). These interactions are not spatially exclusive as we show UBAP1 can associate with MyD88, enhancing its plasma membrane localization. Combined targeting of UBAP1 and TLR adaptors by PumA impedes both cytokine and TLR receptor signalling, highlighting a novel strategy for innate immune evasion.


Assuntos
Proteínas de Transporte/antagonistas & inibidores , Evasão da Resposta Imune , Glicoproteínas de Membrana/antagonistas & inibidores , Fator 88 de Diferenciação Mieloide/antagonistas & inibidores , Pseudomonas aeruginosa/patogenicidade , Receptores de Interleucina-1/antagonistas & inibidores , Receptores Toll-Like/antagonistas & inibidores , Fatores de Virulência/metabolismo , Proteínas de Bactérias/metabolismo , Linhagem Celular , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Humanos , Pseudomonas aeruginosa/imunologia
5.
Structure ; 24(12): 2115-2126, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27839950

RESUMO

Endosomal sorting complexes required for transport (ESCRTs) are essential for ubiquitin-dependent degradation of mitogenic receptors, a process often compromised in cancer pathologies. Sorting of ubiquinated receptors via ESCRTs is controlled by the tumor suppressor phosphatase HD-PTP. The specific interaction between HD-PTP and the ESCRT-I subunit UBAP1 is critical for degradation of growth factor receptors and integrins. Here, we present the structural characterization by X-ray crystallography and double electron-electron resonance spectroscopy of the coiled-coil domain of HD-PTP and its complex with UBAP1. The coiled-coil domain adopts an unexpected open and rigid conformation that contrasts with the closed and flexible coiled-coil domain of the related ESCRT regulator Alix. The HD-PTP:UBAP1 structure identifies the molecular determinants of the interaction and provides a molecular basis for the specific functional cooperation between HD-PTP and UBAP1. Our findings provide insights into the molecular mechanisms of regulation of ESCRT pathways that could be relevant to anticancer therapies.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/química , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína
6.
Biochem J ; 473(21): 3965-3978, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27582497

RESUMO

LITAF (LPS-induced TNF-activating factor) is an endosome-associated integral membrane protein important for multivesicular body sorting. Several mutations in LITAF cause autosomal-dominant Charcot Marie Tooth disease type 1C. These mutations map to a highly conserved C-terminal region, termed the LITAF domain, which includes a 22 residue hydrophobic sequence and flanking cysteine-rich regions that contain peptide motifs found in zinc fingers. Although the LITAF domain is thought to be responsible for membrane integration, the membrane topology of LITAF has not been established. Here, we have investigated whether LITAF is a tail-anchored (TA) membrane-spanning protein or monotopic membrane protein. When translated in vitro, LITAF integrates poorly into ER-derived microsomes compared with Sec61ß, a bona fide TA protein. Furthermore, introduction of N-linked glycosylation reporters shows that neither the N-terminal nor C-terminal domains of LITAF translocate into the ER lumen. Expression in cells of an LITAF construct containing C-terminal glycosylation sites confirms that LITAF is not a TA protein in cells. Finally, an immunofluorescence-based latency assay showed that both the N- and C-termini of LITAF are exposed to the cytoplasm. Recombinant LITAF contains 1 mol/mol zinc, while mutation of predicted zinc-binding residues disrupts LITAF membrane association. Hence, we conclude that LITAF is a monotopic membrane protein whose membrane integration is stabilised by a zinc finger. The related human protein, CDIP1 (cell death involved p53 target 1), displays identical membrane topology, suggesting that this mode of membrane integration is conserved in LITAF family proteins.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Doença de Charcot-Marie-Tooth/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular , Células HeLa , Humanos , Microssomos/metabolismo , Dados de Sequência Molecular , Transporte Proteico
7.
J Cell Sci ; 127(Pt 21): 4728-39, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25179605

RESUMO

Hydrophobic amino acids are normally shielded from the cytosol and their exposure is often used as an indicator of protein misfolding to enable the chaperone-mediated recognition and quality control of aberrant polypeptides. Mislocalised membrane proteins (MLPs) represent a particular challenge to cellular quality control, and, in this study, membrane protein fragments have been exploited to study a specialised pathway that underlies the efficient detection and proteasomal degradation of MLPs. Our data show that the BAG6 complex and SGTA compete for cytosolic MLPs by recognition of their exposed hydrophobicity, and the data suggest that SGTA acts to maintain these substrates in a non-ubiquitylated state. Hence, SGTA might counter the actions of BAG6 to delay the ubiquitylation of specific precursors and thereby increase their opportunity for successful post-translational delivery to the endoplasmic reticulum. However, when SGTA is overexpressed, the normally efficient removal of aberrant MLPs is delayed, increasing their steady-state level and promoting aggregation. Our data suggest that SGTA regulates the cellular fate of a range of hydrophobic polypeptides should they become exposed to the cytosol.


Assuntos
Proteínas de Transporte/metabolismo , Citosol/metabolismo , Western Blotting , Proteínas de Transporte/genética , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imunoprecipitação , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Chaperonas Moleculares
8.
J Cell Sci ; 127(Pt 3): 663-72, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24284069

RESUMO

ESCRT-I is essential for the multivesicular body (MVB) sorting of ubiquitylated cargo such as epidermal growth factor receptor, as well as for several cellular functions, such as cell division and retroviral budding. ESCRT-I has four subunits; TSG101, VPS28, VPS37 and MVB12. There are several members of VPS37 and MVB12 families in mammalian cells, and their differential incorporation into ESCRT-I could provide function-specific variants of the complex. However, it remains unclear whether these different forms of VPS37 and MVB12 combine randomly or generate selective pairings within ESCRT-I, and what the mechanistic basis for such pairing would be. Here, we show that the incorporation of two MVB12 members, UBAP1 and MVB12A, into ESCRT-I is highly selective with respect to their VPS37 partners. We map the region mediating selective assembly of UBAP1-VPS37A to the core ESCRT-I-binding domain of VPS37A. In contrast, selective integration of UBAP1 requires both the minimal ESCRT-I-binding region and a neighbouring predicted helix. The biochemical specificity in ESCRT-I assembly is matched by functional specialisation as siRNA-mediated depletion of UBAP1, but not MVB12A and MVB12B, disrupts ubiquitin-dependent sorting at the MVB.


Assuntos
Proteínas de Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Endossomos/genética , Complexos Multiproteicos/metabolismo , Animais , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Receptores ErbB/metabolismo , Humanos , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Ligação Proteica , Transporte Proteico/genética , RNA Interferente Pequeno , Fatores de Transcrição/metabolismo , Ubiquitina/metabolismo , Proteínas de Transporte Vesicular/metabolismo
9.
Biochem J ; 456(2): 297-309, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24015703

RESUMO

The majority of the polytopic proteins that are synthesized at the ER (endoplasmic reticulum) are integrated co-translationally via the Sec61 translocon, which provides lateral access for their hydrophobic TMs (transmembrane regions) to the phospholipid bilayer. A prolonged association between TMs of the potassium channel subunit, TASK-1 [TWIK (tandem-pore weak inwardly rectifying potassium channel)-related acid-sensitive potassium channel 1], and the Sec61 complex suggests that the ER translocon co-ordinates the folding/assembly of the TMs present in the nascent chain. The N-terminus of both TASK-1 and Kcv (potassium channel protein of chlorella virus), another potassium channel subunit of viral origin, has access to the N-glycosylation machinery located in the ER lumen, indicating that the Sec61 complex can accommodate multiple arrangements/orientations of TMs within the nascent chain, both in vitro and in vivo. Hence the ER translocon can provide the ribosome-bound nascent chain with a dynamic environment in which it can explore a range of different conformations en route to its correct transmembrane topology and final native structure.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Canais de Potássio de Domínios Poros em Tandem/biossíntese , Retículo Endoplasmático/metabolismo , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Proteínas de Membrana/química , Proteínas do Tecido Nervoso/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Canais de Potássio de Domínios Poros em Tandem/química , Sinais Direcionadores de Proteínas , Estrutura Secundária de Proteína , Canais de Translocação SEC
10.
PLoS One ; 8(3): e59590, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23533635

RESUMO

BACKGROUND: The BAG6 protein is a subunit of a heterotrimeric complex that binds a range of membrane and secretory protein precursors localized to the cytosol, enforcing quality control and influencing their subsequent fate. METHODOLOGY AND PRINCIPAL FINDINGS: BAG6 has an N-terminal ubiquitin-like domain, and a C-terminal Bcl-2-associated athanogene domain, separated by a large central proline-rich region. We have used in vitro binding approaches to identify regions of BAG6 important for its interactions with: i) the small-glutamine rich tetratricopeptide repeat-containing protein alpha (SGTA) and ii) two model tail-anchored membrane proteins as a paradigm for its hydrophobic substrates. We show that the BAG6-UBL is essential for binding to SGTA, and find that the UBL of a second subunit of the BAG6-complex, ubiquitin-like protein 4A (UBL4A), competes for SGTA binding. Our data show that this binding is selective, and suggest that SGTA can bind either BAG6, or UBL4A, but not both at the same time. We adapted our in vitro binding assay to study the association of BAG6 with an immobilized tail-anchored protein, Sec61ß, and find both the UBL and BAG domains are dispensable for binding this substrate. This conclusion was further supported using a heterologous subcellular localization assay in yeast, where the BAG6-dependent nuclear relocalization of a second tail-anchored protein, GFP-Sed5, also required neither the UBL, nor the BAG domain of BAG6. SIGNIFICANCE: On the basis of these findings, we propose a working model where the large central region of the BAG6 protein provides a binding site for a diverse group of substrates, many of which expose a hydrophobic stretch of polypeptide. This arrangement would enable the BAG6 complex to bring together its substrates with potential effectors including those recruited via its N-terminal UBL. Such effectors may include SGTA, and the resulting assemblies influence the subsequent fate of the hydrophobic BAG6 substrates.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Membrana/genética , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA