Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
2.
ChemMedChem ; 19(13): e202400025, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38581280

RESUMO

Identification and assessment of novel targets is essential to combat drug resistance in the treatment of HIV/AIDS. HIV Capsid (HIV-CA), the protein playing a major role in both the early and late stages of the viral life cycle, has emerged as an important target. We have applied an NMR fragment screening platform and identified molecules that bind to the N-terminal domain (NTD) of HIV-CA at a site close to the interface with the C-terminal domain (CTD). Using X-ray crystallography, we have been able to obtain crystal structures to identify the binding mode of these compounds. This allowed for rapid progression of the initial, weak binding, fragment starting points to compounds 37 and 38, which have 19F-pKi values of 5.3 and 5.4 respectively.


Assuntos
Fármacos Anti-HIV , Cristalografia por Raios X , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/síntese química , Sítios de Ligação , Descoberta de Drogas , HIV-1/efeitos dos fármacos , Ligação Proteica , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/antagonistas & inibidores , Humanos , Estrutura Molecular , Modelos Moleculares , Espectroscopia de Ressonância Magnética , Relação Estrutura-Atividade
3.
PLoS Negl Trop Dis ; 17(12): e0011799, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38150490

RESUMO

There is a need for novel chemical matter for phenotypic and target-based screens to find starting points for drug discovery programmes in neglected infectious diseases and non-hormonal contraceptives that disproportionately affect Low- and Middle-Income Countries (LMICs). In some disease areas multiple screens of corporate and other libraries have been carried out, giving rise to some valuable starting points and leading to preclinical candidates. Whilst in other disease areas, little screening has been carried out. Much screening against pathogens has been conducted phenotypically as there are few robustly validated protein targets. However, many of the active compound series identified share the same molecular targets. To address the need for new chemical material, in this article we describe the design of a new library, designed for screening in drug discovery programmes for neglected infectious diseases. The compounds have been selected from the Enamine REAL (REadily AccessibLe) library, a virtual library which contains approximately 4.5 billion molecules. The molecules theoretically can be synthesized quickly using commercially available intermediates and building blocks. The vast majority of these have not been prepared before, so this is a source of novel compounds. In this paper we describe the design of a diverse library of 30,000 compounds from this collection (graphical abstract). The new library will be made available to laboratories working in neglected infectious diseases, subject to a review process. The project has been supported by the Bill & Melinda Gates Foundation and the Wellcome Trust (Wellcome).


Assuntos
Doenças Transmissíveis , Saúde Global , Humanos , Bibliotecas de Moléculas Pequenas/química , Descoberta de Drogas , Doenças Transmissíveis/diagnóstico
4.
ACS Med Chem Lett ; 14(11): 1602, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37970589

RESUMO

[This corrects the article DOI: 10.1021/acsmedchemlett.3c00215.].

5.
J Med Chem ; 66(22): 15380-15408, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37948640

RESUMO

There is an urgent need for new tuberculosis (TB) treatments, with novel modes of action, to reduce the incidence/mortality of TB and to combat resistance to current treatments. Through both chemical and genetic methodologies, polyketide synthase 13 (Pks13) has been validated as essential for mycobacterial survival and as an attractive target for Mycobacterium tuberculosis growth inhibitors. A benzofuran series of inhibitors that targeted the Pks13 thioesterase domain, failed to progress to preclinical development due to concerns over cardiotoxicity. Herein, we report the identification of a novel oxadiazole series of Pks13 inhibitors, derived from a high-throughput screening hit and structure-guided optimization. This new series binds in the Pks13 thioesterase domain, with a distinct binding mode compared to the benzofuran series. Through iterative rounds of design, assisted by structural information, lead compounds were identified with improved antitubercular potencies (MIC < 1 µM) and in vitro ADMET profiles.


Assuntos
Benzofuranos , Mycobacterium tuberculosis , Policetídeo Sintases , Antituberculosos/química , Mycobacterium tuberculosis/metabolismo , Benzofuranos/química , Testes de Sensibilidade Microbiana
7.
J Med Chem ; 66(13): 8896-8916, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37343180

RESUMO

While treatment options for human African trypanosomiasis (HAT) have improved significantly, there is still a need for new drugs with eradication now a realistic possibility. Here, we report the development of 2,4-diaminothiazoles that demonstrate significant potency against Trypanosoma brucei, the causative agent of HAT. Using phenotypic screening to guide structure-activity relationships, potent drug-like inhibitors were developed. Proof of concept was established in an animal model of the hemolymphatic stage of HAT. To treat the meningoencephalitic stage of infection, compounds were optimized for pharmacokinetic properties, including blood-brain barrier penetration. However, in vivo efficacy was not achieved, in part due to compounds evolving from a cytocidal to a cytostatic mechanism of action. Subsequent studies identified a nonessential kinase involved in the inositol biosynthesis pathway as the molecular target of these cytostatic compounds. These studies highlight the need for cytocidal drugs for the treatment of HAT and the importance of static-cidal screening of analogues.


Assuntos
Citostáticos , Tripanossomicidas , Trypanosoma brucei brucei , Tripanossomíase Africana , Animais , Humanos , Tripanossomíase Africana/tratamento farmacológico , Tripanossomicidas/uso terapêutico , Tripanossomicidas/farmacocinética , Citostáticos/uso terapêutico , Barreira Hematoencefálica
8.
Nat Commun ; 13(1): 5992, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36220877

RESUMO

Tuberculosis is a major global cause of both mortality and financial burden mainly in low and middle-income countries. Given the significant and ongoing rise of drug-resistant strains of Mycobacterium tuberculosis within the clinical setting, there is an urgent need for the development of new, safe and effective treatments. Here the development of a drug-like series based on a fused dihydropyrrolidino-pyrimidine scaffold is described. The series has been developed against M. tuberculosis lysyl-tRNA synthetase (LysRS) and cellular studies support this mechanism of action. DDD02049209, the lead compound, is efficacious in mouse models of acute and chronic tuberculosis and has suitable physicochemical, pharmacokinetic properties and an in vitro safety profile that supports further development. Importantly, preliminary analysis using clinical resistant strains shows no pre-existing clinical resistance towards this scaffold.


Assuntos
Lisina-tRNA Ligase , Mycobacterium tuberculosis , Tuberculose , Animais , Lisina-tRNA Ligase/química , Lisina-tRNA Ligase/genética , Lisina-tRNA Ligase/farmacologia , Camundongos , Mycobacterium tuberculosis/genética , Tuberculose/tratamento farmacológico
9.
Eur J Med Chem ; 238: 114421, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35594652

RESUMO

Approximately 6-7 million people around the world are estimated to be infected with Trypanosoma cruzi, the causative agent of Chagas disease. The current treatments are inadequate and therefore new medical interventions are urgently needed. In this paper we describe the identification of a series of disubstituted piperazines which shows good potency against the target parasite but is hampered by poor metabolic stability. We outline the strategies used to mitigate this issue such as lowering logD, bioisosteric replacements of the metabolically labile piperazine ring and use of plate-based arrays for quick diversity scoping. We discuss the success of these strategies within the context of this series and highlight the challenges faced in phenotypic programs when attempting to improve the pharmacokinetic profile of compounds whilst maintaining potency against the desired target.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Humanos , Piperazinas/farmacologia
10.
J Med Chem ; 65(1): 409-423, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34910486

RESUMO

With increasing drug resistance in tuberculosis (TB) patient populations, there is an urgent need for new drugs. Ideally, new agents should work through novel targets so that they are unencumbered by preexisting clinical resistance to current treatments. Benzofuran 1 was identified as a potential lead for TB inhibiting a novel target, the thioesterase domain of Pks13. Although, having promising activity against Mycobacterium tuberculosis, its main liability was inhibition of the hERG cardiac ion channel. This article describes the optimization of the series toward a preclinical candidate. Despite improvements in the hERG liability in vitro, when new compounds were assessed in ex vivo cardiotoxicity models, they still induced cardiac irregularities. Further series development was stopped because of concerns around an insufficient safety window. However, the demonstration of in vivo activity for multiple series members further validates Pks13 as an attractive novel target for antitubercular drugs and supports development of alternative chemotypes.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Benzofuranos/farmacologia , Palmitoil-CoA Hidrolase/antagonistas & inibidores , Piperidinas/farmacologia , Policetídeo Sintases/antagonistas & inibidores , Benzofuranos/síntese química , Cardiotoxicidade , Descoberta de Drogas , Canal de Potássio ERG1 , Coração/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Mycobacterium tuberculosis/efeitos dos fármacos , Piperidinas/síntese química , Relação Estrutura-Atividade
11.
J Comput Aided Mol Des ; 35(10): 1025-1036, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34458939

RESUMO

Water molecules play a crucial role in protein-ligand binding, and many tools exist that aim to predict the position and relative energies of these important, but challenging participants of biomolecular recognition. The available tools are, in general, capable of predicting the location of water molecules. However, predicting the effects of their displacement is still very challenging. In this work, a linear-scaling quantum mechanics-based approach was used to assess water network energetics and the changes in network stability upon ligand structural modifications. This approach offers a valuable way to improve understanding of SAR data and help guide compound design.


Assuntos
Proteínas/metabolismo , Termodinâmica , Água/química , Sítios de Ligação , Ligantes , Modelos Moleculares , Ligação Proteica , Proteínas/química , Água/metabolismo
12.
PLoS One ; 16(7): e0253364, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34270554

RESUMO

Of the 16 non-structural proteins (Nsps) encoded by SARS CoV-2, Nsp3 is the largest and plays important roles in the viral life cycle. Being a large, multidomain, transmembrane protein, Nsp3 has been the most challenging Nsp to characterize. Encoded within Nsp3 is the papain-like protease domain (PLpro) that cleaves not only the viral polypeptide but also K48-linked polyubiquitin and the ubiquitin-like modifier, ISG15, from host cell proteins. We here compare the interactors of PLpro and Nsp3 and find a largely overlapping interactome. Intriguingly, we find that near full length Nsp3 is a more active protease compared to the minimal catalytic domain of PLpro. Using a MALDI-TOF based assay, we screen 1971 approved clinical compounds and identify five compounds that inhibit PLpro with IC50s in the low micromolar range but showed cross reactivity with other human deubiquitinases and had no significant antiviral activity in cellular SARS-CoV-2 infection assays. We therefore looked for alternative methods to block PLpro activity and engineered competitive nanobodies that bind to PLpro at the substrate binding site with nanomolar affinity thus inhibiting the enzyme. Our work highlights the importance of studying Nsp3 and provides tools and valuable insights to investigate Nsp3 biology during the viral infection cycle.


Assuntos
Antivirais/farmacologia , Inibidores de Proteases/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Anticorpos de Cadeia Única/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Células A549 , Complexo Antígeno-Anticorpo , Humanos , Concentração Inibidora 50 , RNA Polimerase Dependente de RNA/imunologia , RNA Polimerase Dependente de RNA/metabolismo , Anticorpos de Cadeia Única/imunologia , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/metabolismo
13.
ACS Infect Dis ; 7(6): 1666-1679, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33939919

RESUMO

Coenzyme A (CoA) is a ubiquitous cofactor present in all living cells and estimated to be required for up to 9% of intracellular enzymatic reactions. Mycobacterium tuberculosis (Mtb) relies on its own ability to biosynthesize CoA to meet the needs of the myriad enzymatic reactions that depend on this cofactor for activity. As such, the pathway to CoA biosynthesis is recognized as a potential source of novel tuberculosis drug targets. In prior work, we genetically validated CoaBC as a bactericidal drug target in Mtb in vitro and in vivo. Here, we describe the identification of compound 1f, a small molecule inhibitor of the 4'-phosphopantothenoyl-l-cysteine synthetase (PPCS; CoaB) domain of the bifunctional Mtb CoaBC, and show that this compound displays on-target activity in Mtb. Compound 1f was found to inhibit CoaBC uncompetitively with respect to 4'-phosphopantothenate, the substrate for the CoaB-catalyzed reaction. Furthermore, metabolomic profiling of wild-type Mtb H37Rv following exposure to compound 1f produced a signature consistent with perturbations in pantothenate and CoA biosynthesis. As the first report of a direct small molecule inhibitor of Mtb CoaBC displaying target-selective whole-cell activity, this study confirms the druggability of CoaBC and chemically validates this target.


Assuntos
Mycobacterium tuberculosis , Peptídeo Sintases/antagonistas & inibidores , Coenzima A , Cisteína/análogos & derivados , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Ácido Pantotênico/análogos & derivados , Peptídeo Sintases/genética
14.
J Med Chem ; 64(9): 5905-5930, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33904304

RESUMO

There is an urgent need for new treatments for visceral leishmaniasis (VL), a parasitic infection which impacts heavily large areas of East Africa, Asia, and South America. We previously reported on the discovery of GSK3494245/DDD01305143 (1) as a preclinical candidate for VL and, herein, we report on the medicinal chemistry program that led to its identification. A hit from a phenotypic screen was optimized to give a compound with in vivo efficacy, which was hampered by poor solubility and genotoxicity. The work on the original scaffold failed to lead to developable compounds, so an extensive scaffold-hopping exercise involving medicinal chemistry design, in silico profiling, and subsequent synthesis was utilized, leading to the preclinical candidate. The compound was shown to act via proteasome inhibition, and we report on the modeling of different scaffolds into a cryo-EM structure and the impact this has on our understanding of the series' structure-activity relationships.


Assuntos
Desenho de Fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/química , Proteínas de Protozoários/metabolismo , Animais , Antiprotozoários/química , Antiprotozoários/metabolismo , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Sítios de Ligação , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Meia-Vida , Humanos , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/metabolismo , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Camundongos , Simulação de Dinâmica Molecular , Complexo de Endopeptidases do Proteassoma/química , Inibidores de Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas de Protozoários/química , Piridinas/química , Piridinas/metabolismo , Piridinas/farmacologia , Piridinas/uso terapêutico , Solubilidade , Relação Estrutura-Atividade
15.
Cell Chem Biol ; 28(8): 1180-1191.e20, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-33765439

RESUMO

Tryptophan biosynthesis represents an important potential drug target for new anti-TB drugs. We identified a series of indole-4-carboxamides with potent antitubercular activity. In vitro, Mycobacterium tuberculosis (Mtb) acquired resistance to these compounds through three discrete mechanisms: (1) a decrease in drug metabolism via loss-of-function mutations in the amidase that hydrolyses these carboxamides, (2) an increased biosynthetic rate of tryptophan precursors via loss of allosteric feedback inhibition of anthranilate synthase (TrpE), and (3) mutation of tryptophan synthase (TrpAB) that decreased incorporation of 4-aminoindole into 4-aminotryptophan. Thus, these indole-4-carboxamides act as prodrugs of a tryptophan antimetabolite, 4-aminoindole.


Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Indóis/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Triptofano/biossíntese , Animais , Antituberculosos/química , Antituberculosos/metabolismo , Relação Dose-Resposta a Droga , Indóis/química , Indóis/metabolismo , Camundongos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Mycobacterium bovis/efeitos dos fármacos , Mycobacterium bovis/metabolismo , Mycobacterium tuberculosis/metabolismo
16.
ACS Omega ; 6(3): 2284-2311, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33521468

RESUMO

With the emergence of multi-drug-resistant strains of Mycobacterium tuberculosis, there is a pressing need for new oral drugs with novel mechanisms of action. A number of scaffolds with potent anti-tubercular in vitro activity have been identified from phenotypic screening that appear to target MmpL3. However, the scaffolds are typically lipophilic, which facilitates partitioning into hydrophobic membranes, and several contain basic amine groups. Highly lipophilic basic amines are typically cytotoxic against mammalian cell lines and have associated off-target risks, such as inhibition of human ether-à-go-go related gene (hERG) and IKr potassium current modulation. The spirocycle compound 3 was reported to target MmpL3 and displayed promising efficacy in a murine model of acute tuberculosis (TB) infection. However, this highly lipophilic monobasic amine was cytotoxic and inhibited the hERG ion channel. Herein, the related spirocycles (1-2) are described, which were identified following phenotypic screening of the Eli Lilly corporate library against M. tuberculosis. The novel N-alkylated pyrazole portion offered improved physicochemical properties, and optimization led to identification of a zwitterion series, exemplified by lead 29, with decreased HepG2 cytotoxicity as well as limited hERG ion channel inhibition. Strains with mutations in MmpL3 were resistant to 29, and under replicating conditions, 29 demonstrated bactericidal activity against M. tuberculosis. Unfortunately, compound 29 had no efficacy in an acute model of TB infection; this was most likely due to the in vivo exposure remaining above the minimal inhibitory concentration for only a limited time.

17.
Nat Commun ; 12(1): 143, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420031

RESUMO

Coenzyme A (CoA) is a fundamental co-factor for all life, involved in numerous metabolic pathways and cellular processes, and its biosynthetic pathway has raised substantial interest as a drug target against multiple pathogens including Mycobacterium tuberculosis. The biosynthesis of CoA is performed in five steps, with the second and third steps being catalysed in the vast majority of prokaryotes, including M. tuberculosis, by a single bifunctional protein, CoaBC. Depletion of CoaBC was found to be bactericidal in M. tuberculosis. Here we report the first structure of a full-length CoaBC, from the model organism Mycobacterium smegmatis, describe how it is organised as a dodecamer and regulated by CoA thioesters. A high-throughput biochemical screen focusing on CoaB identified two inhibitors with different chemical scaffolds. Hit expansion led to the discovery of potent and selective inhibitors of M. tuberculosis CoaB, which we show to bind to a cryptic allosteric site within CoaB.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Carboxiliases/antagonistas & inibidores , Mycobacterium smegmatis/enzimologia , Mycobacterium tuberculosis/efeitos dos fármacos , Peptídeo Sintases/antagonistas & inibidores , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico/efeitos dos fármacos , Antituberculosos/uso terapêutico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Carboxiliases/genética , Carboxiliases/metabolismo , Carboxiliases/ultraestrutura , Coenzima A/biossíntese , Cristalografia por Raios X , Ensaios Enzimáticos , Técnicas de Silenciamento de Genes , Ensaios de Triagem em Larga Escala , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Peptídeo Sintases/ultraestrutura , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
18.
ACS Infect Dis ; 7(2): 479-492, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33405882

RESUMO

Pyrazolo[1,5-a]pyrimidin-7(4H)-one was identified through high-throughput whole-cell screening as a potential antituberculosis lead. The core of this scaffold has been identified several times previously and has been associated with various modes of action against Mycobacterium tuberculosis (Mtb). We explored this scaffold through the synthesis of a focused library of analogues and identified key features of the pharmacophore while achieving substantial improvements in antitubercular activity. Our best hits had low cytotoxicity and showed promising activity against Mtb within macrophages. The mechanism of action of these compounds was not related to cell-wall biosynthesis, isoprene biosynthesis, or iron uptake as has been found for other compounds sharing this core structure. Resistance to these compounds was conferred by mutation of a flavin adenine dinucleotide (FAD)-dependent hydroxylase (Rv1751) that promoted compound catabolism by hydroxylation from molecular oxygen. Our results highlight the risks of chemical clustering without establishing mechanistic similarity of chemically related growth inhibitors.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Antituberculosos/farmacologia , Ensaios de Triagem em Larga Escala , Mycobacterium tuberculosis/genética , Relação Estrutura-Atividade
19.
J Med Chem ; 64(1): 719-740, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33395287

RESUMO

Phenotypic screening of a Medicines for Malaria Venture compound library against Mycobacterium tuberculosis (Mtb) identified a cluster of pan-active 2-pyrazolylpyrimidinones. The biology triage of these actives using various tool strains of Mtb suggested a novel mechanism of action. The compounds were bactericidal against replicating Mtb and retained potency against clinical isolates of Mtb. Although selected MmpL3 mutant strains of Mtb showed resistance to these compounds, there was no shift in the minimum inhibitory concentration (MIC) against a mmpL3 hypomorph, suggesting mutations in MmpL3 as a possible resistance mechanism for the compounds but not necessarily as the target. RNA transcriptional profiling and the checkerboard board 2D-MIC assay in the presence of varying concentrations of ferrous salt indicated perturbation of the Fe-homeostasis by the compounds. Structure-activity relationship studies identified potent compounds with good physicochemical properties and in vitro microsomal metabolic stability with moderate selectivity over cytotoxicity against mammalian cell lines.


Assuntos
Antituberculosos/química , Pirimidinonas/química , Animais , Antituberculosos/metabolismo , Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Meia-Vida , Humanos , Ferro/metabolismo , Masculino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Microssomos/metabolismo , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/isolamento & purificação , Pirazóis/química , Pirimidinonas/metabolismo , Pirimidinonas/farmacologia , Ratos , Relação Estrutura-Atividade
20.
Nat Commun ; 11(1): 5348, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093447

RESUMO

Myristoylation, the N-terminal modification of proteins with the fatty acid myristate, is critical for membrane targeting and cell signaling. Because cancer cells often have increased N-myristoyltransferase (NMT) expression, NMTs were proposed as anti-cancer targets. To systematically investigate this, we performed robotic cancer cell line screens and discovered a marked sensitivity of hematological cancer cell lines, including B-cell lymphomas, to the potent pan-NMT inhibitor PCLX-001. PCLX-001 treatment impacts the global myristoylation of lymphoma cell proteins and inhibits early B-cell receptor (BCR) signaling events critical for survival. In addition to abrogating myristoylation of Src family kinases, PCLX-001 also promotes their degradation and, unexpectedly, that of numerous non-myristoylated BCR effectors including c-Myc, NFκB and P-ERK, leading to cancer cell death in vitro and in xenograft models. Because some treated lymphoma patients experience relapse and die, targeting B-cell lymphomas with a NMT inhibitor potentially provides an additional much needed treatment option for lymphoma.


Assuntos
Aciltransferases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Linfoma de Células B/tratamento farmacológico , Ácido Mirístico/metabolismo , Adenina/análogos & derivados , Aminopiridinas/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dasatinibe/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Camundongos , Camundongos SCID , Modelos Biológicos , Piperidinas , Pirazóis/farmacologia , Pirimidinas/farmacologia , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA