Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Forensic Sci Res ; 9(1): owad049, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38545404

RESUMO

Postmortem interval may be estimated based on the age of insect evidence collected on a death scene. Reference data that are used in such estimation frequently comprise thermal summation constant (i.e. k), which is equal to the insect age upon completion of immature development expressed in accumulated degree-days or degree-hours (ADD or ADH). Essentially, k is a central point of an insect group and it may poorly represent insect evidence that is near the limits of variation for the group. Accordingly, it was postulated to calibrate k for particular insect evidence and insect size and sex were found to be useful for this purpose in some of the species. However, the calibration is only possible by using the model that correlates k with insect size. Since very few such models were published, this lack of data limits the calibration of k in forensic casework. In this article, we develop a formula that is useful for the calibration of k without the use of "k versus size" model (and related datasets). The formula uses k from the general thermal summation model for a species (with its standard error), size range for the species (retrieved from entomology literature), and size measurements for particular insect evidence. The calibration of k with the formula was validated using the Creophilus maxillosus (Coleoptera: Staphylinidae) and Necrodes littoralis (Coleoptera: Silphidae) datasets. It was particularly useful while analyzing unusually small and large insects, in case of which the formula reduced the inaccuracy of k from the general model on average by ~25 ADD in C. maxillosus and ~40 ADD in N. littoralis. We discuss the limitations and prospects of the calibration protocol that employs the formula.

2.
Insect Sci ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480671

RESUMO

Aggregations of juveniles are dominant forms of social life in some insect groups. Larval societies are shaped by competitive and cooperative interactions of the larvae, in parallel with parental effects. Colonies of necrophagous larvae are excellent systems to study these relationships. Necrodes littoralis (Staphylinidae: Silphinae), a carrion beetle that colonizes cadavers of large vertebrates, forms massive juvenile aggregations. By spreading over carrion anal and oral exudates, the beetles form the feeding matrix, in which the heat is produced and by which adults presumably affect the fitness of the larvae. We predict that exploitative competition shapes the behavior of N. littoralis larvae in their aggregations. However, cooperative interactions may also operate in these systems due mainly to the benefits of collective exodigestion. Moreover, indirect parental effects (i.e., formation of the feeding matrix) probably modulate larval interactions within the aggregations. By manipulating parental effects (present/absent) and larval density (0.02-1.9 larvae/g of meat), we found a strong negative group-size effect on fitness components of N. littoralis, in colonies with parental effects over almost the entire density range, and in colonies without parental effects for densities larger than 0.5 larva/g. This was accompanied by positive group-size effects in terms of development time (it shortened with larval density) and thermogenesis (it increased with larval density). A pronounced positive group-size effect on juvenile fitness was found only in colonies without parental effects and only in the low-density range. These results support the hypothesis that larval societies of N. littoralis are shaped by exploitation competition.

3.
Forensic Sci Med Pathol ; 17(2): 192-198, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33165806

RESUMO

The puparium is the hardened exoskeleton of the last larval instar of a fly, inside which a prepupa, a pupa and a pharate adult fly successively develop. Empty puparia are frequently collected at death scenes, especially in cases with a long post mortem interval (PMI). Although we are not able to estimate the interval between the eclosion of an adult fly and the collection of an empty puparium (i.e. the post-eclosion interval (PEI)), empty puparia may still provide valuable evidence about the minimum PMI. However, because of the unknown PEI, it is impossible to determine the time when the fly emerged, and thus when the retrospective calculation of the minimum PMI should start. In this study, the estimation of PMI (or minimum PMI) for empty puparia of Protophormia terraenovae Rob.-Desv. (Calliphoridae) and Stearibia nigriceps Meig. (Piophilidae) was simulated, to gain insight into the changes in estimates, when different PEIs and different temperature conditions were assumed. The simulations showed that the PEI (in a range of 0-90 days) had no effect on the PMI (or minimum PMI) when the puparium was collected in winter or early spring (December-April). In late spring, summer, or autumn (May-November) the PMI (or minimum PMI) increased with the PEI. The increase in PMI was large in the summer months, and surprisingly small in the autumn months, frequently smaller than the PEI used in the estimation. The shortest PMI was always obtained with a PEI of 0, indicating that the true minimum PMI is always estimated using a PEI of 0. When the puparium was collected during spring, simulations indicated that oviposition had occurred in the previous year, while in summer the previous-year oviposition has been indicated by the simulations only when longer PEIs had been assumed. These findings should guide estimation of the PMI (or minimum PMI) based on an empty puparium.


Assuntos
Dípteros , Entomologia Forense , Tempo , Animais , Feminino , Entomologia Forense/métodos , Larva , Mudanças Depois da Morte , Pupa , Estudos Retrospectivos , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA