Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
F1000Res ; 6: 30, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28491280

RESUMO

Objective: To develop a novel software method (AR2) for reducing muscle contamination of ictal scalp electroencephalogram (EEG), and validate this method on the basis of its performance in comparison to a commercially available software method (AR1) to accurately depict seizure-onset location. Methods: A blinded investigation used 23 EEG recordings of seizures from 8 patients. Each recording was uninterpretable with digital filtering because of muscle artifact and processed using AR1 and AR2 and reviewed by 26 EEG specialists. EEG readers assessed seizure-onset time, lateralization, and region, and specified confidence for each determination. The two methods were validated on the basis of the number of readers able to render assignments, confidence, the intra-class correlation (ICC), and agreement with other clinical findings. Results: Among the 23 seizures, two-thirds of the readers were able to delineate seizure-onset time in 10 of 23 using AR1, and 15 of 23 using AR2 (p<0.01). Fewer readers could lateralize seizure-onset (p<0.05). The confidence measures of the assignments were low (probable-unlikely), but increased using AR2 (p<0.05). The ICC for identifying the time of seizure-onset was 0.15 (95% confidence interval (CI), 0.11-0.18) using AR1 and 0.26 (95% CI 0.21-0.30) using AR2.  The EEG interpretations were often consistent with behavioral, neurophysiological, and neuro-radiological findings, with left sided assignments correct in 95.9% (CI 85.7-98.9%, n=4) of cases using AR2, and 91.9% (77.0-97.5%) (n=4) of cases using AR1. Conclusions: EEG artifact reduction methods for localizing seizure-onset does not result in high rates of interpretability, reader confidence, and inter-reader agreement. However, the assignments by groups of readers are often congruent with other clinical data. Utilization of the AR2 software method may improve the validity of ictal EEG artifact reduction.

2.
Epilepsia ; 49(3): 481-7, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17868054

RESUMO

OBJECTIVE: To establish the efficacy and safety of low-frequency electrical stimulation for cortical brain mapping. METHODS: Cortical function was mapped using electrical stimulation in epilepsy patients with chronically implanted intracranial subdural electrodes. Contacts overlying motor, sensory, visual, and language cortex were stimulated at frequencies of 5, 10, and 50 Hz, using current levels ranging from 1 to 17.5 mA for 3-5 s. The current intensity and incidence at which functional alterations and afterdischarges (ADs) occurred were recorded. The modified McNemar test for nonindependent measures was used to analyze the data. RESULTS: 122 electrode contact pairs were electrically stimulated at least two different frequencies in 14 patients. Functional alterations were obtained at all stimulation frequencies (5, 10, and 50 Hz) at generally similar rates. The likelihood of producing an AD correlated with stimulation frequency, and lower-frequency stimulation was less likely to provoke an AD. Higher current intensity was required to induce both functional responses and ADs at low-frequency stimulation than high-frequency stimulation. While overall rates of producing functional changes were similar, differences in functional response with regard to frequency were noted at individual cortical sites. CONCLUSION: 5- and 10-Hz stimulation are as effective for mapping cortical function as 50-Hz stimulation and produce fewer ADs. We recommend that mapping of cortical function be started with 5-Hz-frequency stimulation. Higher frequencies should be used in suspect cortex if no symptoms or signs are produced with 5-Hz stimulation.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/fisiopatologia , Estimulação Elétrica/métodos , Epilepsias Parciais/fisiopatologia , Adolescente , Adulto , Criança , Eletrodos Implantados , Eletroencefalografia/estatística & dados numéricos , Epilepsias Parciais/diagnóstico , Epilepsias Parciais/cirurgia , Estudos de Avaliação como Assunto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Monitorização Fisiológica , Cuidados Pré-Operatórios/métodos , Convulsões/epidemiologia , Convulsões/etiologia , Convulsões/fisiopatologia , Espaço Subdural
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA