Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Med Vet Entomol ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300680

RESUMO

Mosquitoes occupy a wide range of habitats where they experience various environmental conditions. The ability of some species, such as the tiger mosquito, Aedes albopictus, to adapt to local conditions certainly contributes to their invasive success. Among traits that remain to be examined, mosquitoes' ability to time their activity with that of the local host population has been suggested to be of significant epidemiological importance. However, whether different populations display heritable differences in their chronotype has not been examined. Here, we compared laboratory strains originating from eight populations from three continents, monitored their spontaneous locomotor activity patterns and analysed their sleep-like states. Overall, all strains showed conserved diurnal activity concentrated in the hours preceding the crepuscule. Similarly, they all showed increased sleep levels during the morning and night hours. However, we observed strain-specific differences in the activity levels at each phase of the day. We also observed differences in the fraction of time that each strain spends in a sleep-like state, explained by variations in the sleep architecture across strains. Human population density and the latitude of the site of the geographic origin of the tested strain showed significant effects on sleep and activity patterns. Altogether, these results suggest that Ae. albopictus mosquitoes adapt to local environmental conditions via heritable adaptations of their chronotype.

2.
Med Vet Entomol ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300685

RESUMO

Aedes aegypti is an important mosquito vector of human disease with a wide distribution across the globe. Climatic conditions and ecological pressure drive differences in the biology of several populations of this mosquito species, including blood-feeding behaviour and vector competence. However, no study has compared activity and/or sleep among different populations/lineages of Ae. aegypti. Having recently established sleep-like states in three mosquito species with observable differences in timing and amount of sleep among species, we investigated differences in activity and sleep levels among 17 Ae. aegypti lines drawn from both its native range in Africa and its invasive range across the global tropics. Activity monitoring indicates that all the lines show consistent diurnal activity, but significant differences in activity level, sleep amount, number of sleep bouts and bout duration were observed among the lines. The variation in day activity was associated with differences in host preference and ancestry for the lineages collected in Africa. This study provides evidence that the diurnal sleep and activity profiles for Ae. aegypti are consistent, but there are significant population differences for Ae. aegypti sleep and activity levels and interactions with host species may significantly impact mosquito activity.

3.
bioRxiv ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38559099

RESUMO

Mosquitoes occupy a wide range of habitats where they experience various environmental conditions. The ability of some species, such as the tiger mosquito, Aedes albopictus, to adapt to local conditions certainly contributes to their invasive success. Among traits that remain to be examined, mosquitoes' ability to time their activity with that of the local host population has been suggested to be of significant epidemiological importance. However, whether different populations display heritable differences in their chronotype has not been examined. Here, we compared laboratory strains originating from 8 populations from 3 continents, monitored their spontaneous locomotor activity patterns, and analyzed their sleep-like states. Overall, all strains showed conserved diurnal activity concentrated in the hours preceding the crepuscule. Similarly, they all showed increased sleep levels during the morning and night hours. However, we observed strain-specific differences in the activity levels at each phase of the day. We also observed differences in the fraction of time that each strain spends in a sleep-like state, explained by variations in the sleep architecture across strains. Human population density and the latitude of the site of geographic origin of the tested strain showed significant effects on sleep and activity patterns. Altogether, these results suggest that Ae. albopictus mosquitoes adapt to local environmental conditions via heritable adaptations of their chronotype.

4.
Integr Comp Biol ; 63(3): 530-547, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37429615

RESUMO

Understanding the biology of blood-feeding arthropods is critical to managing them as vectors of etiological agents. Circadian rhythms act in the regulation of behavioral and physiological aspects such as blood feeding, immunity, and reproduction. However, the impact of sleep on these processes has been largely ignored in blood-feeding arthropods, but recent studies in mosquitoes show that sleep-like states directly impact host landing and blood feeding. Our focus in this review is on discussing the relationship between sleep and circadian rhythms in blood-feeding arthropods along with how unique aspects such as blood gluttony and dormancy can impact sleep-like states. We highlight that sleep-like states are likely to have profound impacts on vector-host interactions but will vary between lineages even though few direct studies have been conducted. A myriad of factors, such as artificial light, could directly impact the time and levels of sleep in blood-feeding arthropods and their roles as vectors. Lastly, we discuss underlying factors that make sleep studies in blood-feeding arthropods difficult and how these can be bypassed. As sleep is a critical factor in the fitness of animal systems, a lack of focus on sleep in blood-feeding arthropods represents a significant oversight in understanding their behavior and its role in pathogen transmission.


Assuntos
Artrópodes , Condicionamento Físico Animal , Animais , Artrópodes/fisiologia , Sono , Ritmo Circadiano/fisiologia , Biologia
5.
Sci Rep ; 12(1): 21354, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494463

RESUMO

The diurnal mosquitoes Aedes aegypti are vectors of several arboviruses, including dengue, yellow fever, and Zika viruses. To find a host to feed on, they rely on the sophisticated integration of olfactory, visual, thermal, and gustatory cues emitted by the hosts. If detected by their target, this latter may display defensive behaviors that mosquitoes need to be able to detect and escape in order to survive. In humans, a typical response is a swat of the hand, which generates both mechanical and visual perturbations aimed at a mosquito. Here, we used programmable visual displays to generate expanding objects sharing characteristics with the visual component of an approaching hand and quantified the behavioral response of female mosquitoes. Results show that Ae. aegypti is capable of using visual information to decide whether to feed on an artificial host mimic. Stimulations delivered in a LED flight arena further reveal that landed Ae. aegypti females display a stereotypical escape strategy by taking off at an angle that is a function of the direction of stimulus introduction. Altogether, this study demonstrates that mosquitoes landed on a host mimic can use isolated visual cues to detect and avoid a potential threat.


Assuntos
Aedes , Vírus da Dengue , Infecção por Zika virus , Zika virus , Animais , Feminino , Humanos , Mosquitos Vetores
6.
Curr Opin Insect Sci ; 40: 1-5, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32199240

RESUMO

The host-seeking behavior of disease vector insects is central to the transmission of pathogens. In this context, an improved understanding of the mechanisms that allow vectors to detect, identify and locate a potential host will be crucial to refine existing control strategies and invent new ones. Host-seeking is mediated by the integration of cues that are processed by multiple sensory modalities, and provide robust information about host location and quality. Responses to these cues are plastic and vary as a function of the vector's internal state, age, and previous experience. Vectors also integrate other factors such as time of day, or even the level of defensiveness of the host. Here, we review the most recent advances on the molecular basis of host-seeking behavior, with a particular emphasis on disease vector mosquitoes.


Assuntos
Comportamento de Busca por Hospedeiro , Insetos/fisiologia , Mosquitos Vetores/fisiologia , Animais , Sinais (Psicologia) , Insetos Vetores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA