Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 38(5): e23535, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38466300

RESUMO

Caveolae are small flask-shaped invaginations of the surface membrane which are proposed to recruit and co-localize signaling molecules. The distinctive caveolar shape is achieved by the oligomeric structural protein caveolin, of which three isoforms exist. Aside from the finding that caveolin-3 is specifically expressed in muscle, functional differences between the caveolin isoforms have not been rigorously investigated. Caveolin-3 is relatively cysteine-rich compared to caveolins 1 and 2, so we investigated its cysteine post-translational modifications. We find that caveolin-3 is palmitoylated at 6 cysteines and becomes glutathiolated following redox stress. We map the caveolin-3 palmitoylation sites to a cluster of cysteines in its C terminal membrane domain, and the glutathiolation site to an N terminal cysteine close to the region of caveolin-3 proposed to engage in protein interactions. Glutathiolation abolishes caveolin-3 interaction with heterotrimeric G protein alpha subunits. Our results indicate that a caveolin-3 oligomer contains up to 66 palmitates, compared to up to 33 for caveolin-1. The additional palmitoylation sites in caveolin-3 therefore provide a mechanistic basis by which caveolae in smooth and striated muscle can possess unique phospholipid and protein cargoes. These unique adaptations of the muscle-specific caveolin isoform have important implications for caveolar assembly and signaling.


Assuntos
Caveolina 3 , Cisteína , Músculo Esquelético , Processamento de Proteína Pós-Traducional , Isoformas de Proteínas
2.
Cell Rep ; 43(2): 113679, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38236777

RESUMO

Phospholemman (PLM) regulates the cardiac sodium pump: PLM phosphorylation activates the pump whereas PLM palmitoylation inhibits its activity. Here, we show that the anti-oxidant protein peroxiredoxin 6 (Prdx6) interacts with and depalmitoylates PLM in a glutathione-dependent manner. Glutathione loading cells acutely reduce PLM palmitoylation; glutathione depletion significantly increases PLM palmitoylation. Prdx6 silencing abolishes these effects, suggesting that PLM can be depalmitoylated by reduced Prdx6. In vitro, only recombinant Prdx6, among several peroxiredoxin isoforms tested, removes palmitic acid from recombinant palmitoylated PLM. The broad-spectrum depalmitoylase inhibitor palmostatin B prevents Prdx6-dependent PLM depalmitoylation in cells and in vitro. Our data suggest that Prdx6 is a thioesterase that can depalmitoylate proteins by nucleophilic attack via its reactive thiol, linking PLM palmitoylation and hence sodium pump activity to cellular glutathione status. We show that protein depalmitoylation can occur via a catalytic cysteine in which substrate specificity is determined by a protein-protein interaction.


Assuntos
Peroxirredoxina VI , Fosfoproteínas , ATPase Trocadora de Sódio-Potássio , Proteínas de Membrana , Glutationa
3.
Proc Natl Acad Sci U S A ; 120(7): e2207887120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36745790

RESUMO

Mammalian voltage-activated L-type Ca2+ channels, such as Ca(v)1.2, control transmembrane Ca2+ fluxes in numerous excitable tissues. Here, we report that the pore-forming α1C subunit of Ca(v)1.2 is reversibly palmitoylated in rat, rabbit, and human ventricular myocytes. We map the palmitoylation sites to two regions of the channel: The N terminus and the linker between domains I and II. Whole-cell voltage clamping revealed a rightward shift of the Ca(v)1.2 current-voltage relationship when α1C was not palmitoylated. To examine function, we expressed dihydropyridine-resistant α1C in human induced pluripotent stem cell-derived cardiomyocytes and measured Ca2+ transients in the presence of nifedipine to block the endogenous channels. The transients generated by unpalmitoylatable channels displayed a similar activation time course but significantly reduced amplitude compared to those generated by wild-type channels. We thus conclude that palmitoylation controls the voltage sensitivity of Ca(v)1.2. Given that the identified Ca(v)1.2 palmitoylation sites are also conserved in most Ca(v)1 isoforms, we propose that palmitoylation of the pore-forming α1C subunit provides a means to regulate the voltage sensitivity of voltage-activated Ca2+ channels in excitable cells.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Ratos , Humanos , Coelhos , Animais , Miócitos Cardíacos/metabolismo , Cálcio/metabolismo , Lipoilação , Canais de Cálcio Tipo L/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Cálcio da Dieta , Mamíferos/metabolismo
4.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36430497

RESUMO

The relationship between Parkinson's disease (PD), the second-most common neurodegenerative disease after Alzheimer's disease, and palmitoylation, a post-translational lipid modification, is not well understood. In this study, to better understand the role of protein palmitoylation in PD and the pathways altered in this disease, we analyzed the differential palmitoyl proteome (palmitome) in the cerebral cortex of PD patients compared to controls (n = 4 per group). Data-mining of the cortical palmitome from PD patients and controls allowed us to: (i) detect a set of 150 proteins with altered palmitoylation in PD subjects in comparison with controls; (ii) describe the biological pathways and targets predicted to be altered by these palmitoylation changes; and (iii) depict the overlap between the differential palmitome identified in our study with protein interactomes of the PD-linked proteins α-synuclein, LRRK2, DJ-1, PINK1, GBA and UCHL1. In summary, we partially characterized the altered palmitome in the cortex of PD patients, which is predicted to impact cytoskeleton, mitochondrial and fibrinogen functions, as well as cell survival. Our study suggests that protein palmitoylation could have a role in the pathophysiology of PD, and that comprehensive palmitoyl-proteomics offers a powerful approach for elucidating novel cellular pathways modulated in this neurodegenerative disease.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Lipoilação , Doenças Neurodegenerativas/metabolismo , Córtex Cerebral/metabolismo , Mitocôndrias/metabolismo
5.
Cell Calcium ; 106: 102639, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36027648

RESUMO

The bifunctional cation channel/kinase TrpM7 is ubiquitously expressed and regulates embryonic development and pathogenesis of several common diseases. The TrpM7 integral membrane ion channel domain regulates transmembrane movement of divalent cations, and its kinase domain controls gene expression via histone phosphorylation. Mechanisms regulating TrpM7 are elusive. It exists in two populations in the cell: at the cell surface where it controls divalent cation fluxes, and in intracellular vesicles where it controls zinc uptake and release. Here we report that TrpM7 is palmitoylated at a cluster of cysteines at the C terminal end of its Trp domain. Palmitoylation controls the exit of TrpM7 from the endoplasmic reticulum and the distribution of TrpM7 between cell surface and intracellular pools. Using the Retention Using Selective Hooks (RUSH) system, we demonstrate that palmitoylated TrpM7 traffics from the Golgi to the surface membrane whereas non-palmitoylated TrpM7 is sequestered in intracellular vesicles. We identify the Golgi-resident enzyme zDHHC17 and surface membrane-resident enzyme zDHHC5 as responsible for palmitoylating TrpM7 and find that TrpM7-mediated transmembrane calcium uptake is significantly reduced when TrpM7 is not palmitoylated. The closely related channel/kinase TrpM6 is also palmitoylated on the C terminal side of its Trp domain. Our findings demonstrate that palmitoylation controls ion channel activity of TrpM7 and that TrpM7 trafficking is dependant on its palmitoylation. We define a new mechanism for post translational modification and regulation of TrpM7 and other Trps.


Assuntos
Lipoilação , Canais de Cátion TRPM , Cálcio/metabolismo , Cátions/metabolismo , Fosforilação , Transdução de Sinais , Canais de Cátion TRPM/metabolismo
6.
Biochem Soc Trans ; 48(1): 281-290, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31872231

RESUMO

The post-translational modification protein S-acylation (commonly known as palmitoylation) plays a critical role in regulating a wide range of biological processes including cell growth, cardiac contractility, synaptic plasticity, endocytosis, vesicle trafficking, membrane transport and biased-receptor signalling. As a consequence, zDHHC-protein acyl transferases (zDHHC-PATs), enzymes that catalyse the addition of fatty acid groups to specific cysteine residues on target proteins, and acyl proteins thioesterases, proteins that hydrolyse thioester linkages, are important pharmaceutical targets. At present, no therapeutic drugs have been developed that act by changing the palmitoylation status of specific target proteins. Here, we consider the role that palmitoylation plays in the development of diseases such as cancer and detail possible strategies for selectively manipulating the palmitoylation status of specific target proteins, a necessary first step towards developing clinically useful molecules for the treatment of disease.


Assuntos
Aciltransferases/metabolismo , Antígeno B7-H1/metabolismo , Lipoilação/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Receptor Tipo 1 de Melanocortina/metabolismo , Proteínas ras/metabolismo , Animais , Cisteína/metabolismo , Descoberta de Drogas/métodos , Humanos , Lipoilação/fisiologia , Camundongos , Neoplasias/metabolismo , Palmitoil-CoA Hidrolase/metabolismo , Processamento de Proteína Pós-Traducional
7.
Crit Rev Biochem Mol Biol ; 53(2): 175-191, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29424237

RESUMO

The ubiquitous sodium/potassium ATPase (Na pump) is the most abundant primary active transporter at the cell surface of multiple cell types, including ventricular myocytes in the heart. The activity of the Na pump establishes transmembrane ion gradients that control numerous events at the cell surface, positioning it as a key regulator of the contractile and metabolic state of the myocardium. Defects in Na pump activity and regulation elevate intracellular Na in cardiac muscle, playing a causal role in the development of cardiac hypertrophy, diastolic dysfunction, arrhythmias and heart failure. Palmitoylation is the reversible conjugation of the fatty acid palmitate to specific protein cysteine residues; all subunits of the cardiac Na pump are palmitoylated. Palmitoylation of the pump's accessory subunit phospholemman (PLM) by the cell surface palmitoyl acyl transferase DHHC5 leads to pump inhibition, possibly by altering the relationship between the pump catalytic α subunit and specifically bound membrane lipids. In this review, we discuss the functional impact of PLM palmitoylation on the cardiac Na pump and the molecular basis of recognition of PLM by its palmitoylating enzyme DHHC5, as well as effects of palmitoylation on Na pump cell surface abundance in the cardiac muscle. We also highlight the numerous unanswered questions regarding the cellular control of this fundamentally important regulatory process.


Assuntos
Cardiopatias/enzimologia , Lipoilação , Miocárdio/enzimologia , Miócitos Cardíacos/enzimologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Cardiopatias/genética , Cardiopatias/patologia , Ventrículos do Coração/enzimologia , Ventrículos do Coração/patologia , Humanos , Transporte de Íons/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/patologia , Ácido Palmítico/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , ATPase Trocadora de Sódio-Potássio/genética
8.
FASEB J ; 29(11): 4532-43, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26174834

RESUMO

The electrogenic Na/Ca exchanger (NCX) mediates bidirectional Ca movements that are highly sensitive to changes of Na gradients in many cells. NCX1 is implicated in the pathogenesis of heart failure and a number of cardiac arrhythmias. We measured NCX1 palmitoylation using resin-assisted capture, the subcellular location of yellow fluorescent protein-NCX1 fusion proteins, and NCX1 currents using whole-cell voltage clamping. Rat NCX1 is substantially palmitoylated in all tissues examined. Cysteine 739 in the NCX1 large intracellular loop is necessary and sufficient for NCX1 palmitoylation. Palmitoylation of NCX1 occurs in the Golgi and anchors the NCX1 large regulatory intracellular loop to membranes. Surprisingly, palmitoylation does not influence trafficking or localization of NCX1 to surface membranes, nor does it strongly affect the normal forward or reverse transport modes of NCX1. However, exchangers that cannot be palmitoylated do not inactivate normally (leading to substantial activity in conditions when wild-type exchangers are inactive) and do not promote cargo-dependent endocytosis that internalizes 50% of the cell surface following strong G-protein activation or large Ca transients. The palmitoylated cysteine in NCX1 is found in all vertebrate and some invertebrate NCX homologs. Thus, NCX palmitoylation ubiquitously modulates Ca homeostasis and membrane domain function in cells that express NCX proteins.


Assuntos
Sinalização do Cálcio/fisiologia , Complexo de Golgi/metabolismo , Lipoilação/fisiologia , Microdomínios da Membrana/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Cães , Complexo de Golgi/genética , Masculino , Microdomínios da Membrana/genética , Estrutura Secundária de Proteína , Transporte Proteico/fisiologia , Ratos , Ratos Wistar , Trocador de Sódio e Cálcio/genética
9.
Mol Cell Proteomics ; 14(3): 596-608, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25561500

RESUMO

The lipid raft concept proposes that membrane environments enriched in cholesterol and sphingolipids cluster certain proteins and form platforms to integrate cell signaling. In cardiac muscle, caveolae concentrate signaling molecules and ion transporters, and play a vital role in adrenergic regulation of excitation-contraction coupling, and consequently cardiac contractility. Proteomic analysis of cardiac caveolae is hampered by the presence of contaminants that have sometimes, erroneously, been proposed to be resident in these domains. Here we present the first unbiased analysis of the proteome of cardiac caveolae, and investigate dynamic changes in their protein constituents following adrenoreceptor (AR) stimulation. Rat ventricular myocytes were treated with methyl-ß-cyclodextrin (MßCD) to deplete cholesterol and disrupt caveolae. Buoyant caveolin-enriched microdomains (BCEMs) were prepared from MßCD-treated and control cell lysates using a standard discontinuous sucrose gradient. BCEMs were harvested, pelleted, and resolubilized, then alkylated, digested, and labeled with iTRAQ reagents, and proteins identified by LC-MS/MS on a LTQ Orbitrap Velos Pro. Proteins were defined as BCEM resident if they were consistently depleted from the BCEM fraction following MßCD treatment. Selective activation of α-, ß1-, and ß2-AR prior to preparation of BCEMs was achieved by application of agonist/antagonist pairs for 10 min in populations of field-stimulated myocytes. We typically identified 600-850 proteins per experiment, of which, 249 were defined as high-confidence BCEM residents. Functional annotation clustering indicates cardiac BCEMs are enriched in integrin signaling, guanine nucleotide binding, ion transport, and insulin signaling clusters. Proteins possessing a caveolin binding motif were poorly enriched in BCEMs, suggesting this is not the only mechanism that targets proteins to caveolae. With the notable exception of the cavin family, very few proteins show altered abundance in BCEMs following AR activation, suggesting signaling complexes are preformed in BCEMs to ensure a rapid and high fidelity response to adrenergic stimulation in cardiac muscle.


Assuntos
Agonistas Adrenérgicos/farmacologia , Cavéolas/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Proteoma/isolamento & purificação , Proteômica/métodos , Antagonistas Adrenérgicos/farmacologia , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Ratos , Transdução de Sinais , beta-Ciclodextrinas/farmacologia
10.
Proc Natl Acad Sci U S A ; 111(49): 17534-9, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25422474

RESUMO

The cardiac phosphoprotein phospholemman (PLM) regulates the cardiac sodium pump, activating the pump when phosphorylated and inhibiting it when palmitoylated. Protein palmitoylation, the reversible attachment of a 16 carbon fatty acid to a cysteine thiol, is catalyzed by the Asp-His-His-Cys (DHHC) motif-containing palmitoyl acyltransferases. The cell surface palmitoyl acyltransferase DHHC5 regulates a growing number of cellular processes, but relatively few DHHC5 substrates have been identified to date. We examined the expression of DHHC isoforms in ventricular muscle and report that DHHC5 is among the most abundantly expressed DHHCs in the heart and localizes to caveolin-enriched cell surface microdomains. DHHC5 coimmunoprecipitates with PLM in ventricular myocytes and transiently transfected cells. Overexpression and silencing experiments indicate that DHHC5 palmitoylates PLM at two juxtamembrane cysteines, C40 and C42, although C40 is the principal palmitoylation site. PLM interaction with and palmitoylation by DHHC5 is independent of the DHHC5 PSD-95/Discs-large/ZO-1 homology (PDZ) binding motif, but requires a ∼ 120 amino acid region of the DHHC5 intracellular C-tail immediately after the fourth transmembrane domain. PLM C42A but not PLM C40A inhibits the Na pump, indicating PLM palmitoylation at C40 but not C42 is required for PLM-mediated inhibition of pump activity. In conclusion, we demonstrate an enzyme-substrate relationship for DHHC5 and PLM and describe a means of substrate recruitment not hitherto described for this acyltransferase. We propose that PLM palmitoylation by DHHC5 promotes phospholipid interactions that inhibit the Na pump.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/fisiologia , Fosfoproteínas/química , Aciltransferases , Motivos de Aminoácidos , Animais , Membrana Celular/enzimologia , Cães , Endocitose , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Lipoilação , Camundongos , Miocárdio/metabolismo , Plasticidade Neuronal , Fosfolipídeos/química , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , RNA Interferente Pequeno/metabolismo , Ratos , Sódio/química , Especificidade por Substrato , Sinapses
11.
J Biol Chem ; 288(19): 13808-20, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23532852

RESUMO

BACKGROUND: Phospholemman regulates the plasmalemmal sodium pump in excitable tissues. RESULTS: In cardiac muscle, a subpopulation of phospholemman with a unique phosphorylation signature associates with other phospholemman molecules but not with the pump. CONCLUSION: Phospholemman oligomers exist in cardiac muscle. SIGNIFICANCE: Much like phospholamban regulation of SERCA, phospholemman exists as both a sodium pump inhibiting monomer and an unassociated oligomer. Phospholemman (PLM), the principal quantitative sarcolemmal substrate for protein kinases A and C in the heart, regulates the cardiac sodium pump. Much like phospholamban, which regulates the related ATPase SERCA, PLM is reported to oligomerize. We investigated subpopulations of PLM in adult rat ventricular myocytes based on phosphorylation status. Co-immunoprecipitation identified two pools of PLM: one not associated with the sodium pump phosphorylated at Ser(63) and one associated with the pump, both phosphorylated at Ser(68) and unphosphorylated. Phosphorylation of PLM at Ser(63) following activation of PKC did not abrogate association of PLM with the pump, so its failure to associate with the pump was not due to phosphorylation at this site. All pools of PLM co-localized to cell surface caveolin-enriched microdomains with sodium pump α subunits, despite the lack of caveolin-binding motif in PLM. Mass spectrometry analysis of phosphospecific immunoprecipitation reactions revealed no unique protein interactions for Ser(63)-phosphorylated PLM, and cross-linking reagents also failed to identify any partner proteins for this pool. In lysates from hearts of heterozygous transgenic animals expressing wild type and unphosphorylatable PLM, Ser(63)-phosphorylated PLM co-immunoprecipitated unphosphorylatable PLM, confirming the existence of PLM multimers. Dephosphorylation of the PLM multimer does not change sodium pump activity. Hence like phospholamban, PLM exists as a pump-inhibiting monomer and an unassociated oligomer. The distribution of different PLM phosphorylation states to different pools may be explained by their differential proximity to protein phosphatases rather than a direct effect of phosphorylation on PLM association with the pump.


Assuntos
Ventrículos do Coração/citologia , Proteínas de Membrana/metabolismo , Miócitos Cardíacos/metabolismo , Fosfoproteínas/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Motivos de Aminoácidos , Animais , Cavéolas/metabolismo , Fixadores/química , Formaldeído/química , Ventrículos do Coração/metabolismo , Imunoprecipitação , Complexos Multiproteicos/metabolismo , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Subunidades Proteicas/metabolismo , Ratos
12.
J Biol Chem ; 286(41): 36020-36031, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21868384

RESUMO

Phospholemman (PLM), the principal sarcolemmal substrate for protein kinases A and C in the heart, regulates the cardiac sodium pump. We investigated post-translational modifications of PLM additional to phosphorylation in adult rat ventricular myocytes (ARVM). LC-MS/MS of tryptically digested PLM immunoprecipitated from ARVM identified cysteine 40 as palmitoylated in some peptides, but no information was obtained regarding the palmitoylation status of cysteine 42. PLM palmitoylation was confirmed by immunoprecipitating PLM from ARVM loaded with [(3)H]palmitic acid and immunoblotting following streptavidin affinity purification from ARVM lysates subjected to fatty acyl biotin exchange. Mutagenesis identified both Cys-40 and Cys-42 of PLM as palmitoylated. Phosphorylation of PLM at serine 68 by PKA in ARVM or transiently transfected HEK cells increased its palmitoylation, but PKA activation did not increase the palmitoylation of S68A PLM-YFP in HEK cells. Wild type and unpalmitoylatable PLM-YFP were all correctly targeted to the cell surface membrane, but the half-life of unpalmitoylatable PLM was reduced compared with wild type. In cells stably expressing inducible PLM, PLM expression inhibited the sodium pump, but PLM did not inhibit the sodium pump when palmitoylation was inhibited. Hence, palmitoylation of PLM controls its turnover, and palmitoylated PLM inhibits the sodium pump. Surprisingly, phosphorylation of PLM enhances its palmitoylation, probably through the enhanced mobility of the phosphorylated intracellular domain increasing the accessibility of cysteines for the palmitoylating enzyme, with interesting theoretical implications. All FXYD proteins have conserved intracellular cysteines, so FXYD protein palmitoylation may be a universal means to regulate the sodium pump.


Assuntos
Ventrículos do Coração/metabolismo , Lipoilação/fisiologia , Proteínas de Membrana/metabolismo , Miócitos Cardíacos/metabolismo , Fosfoproteínas/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Substituição de Aminoácidos , Animais , Células HEK293 , Ventrículos do Coração/citologia , Humanos , Proteínas de Membrana/genética , Mutagênese , Mutação de Sentido Incorreto , Miócitos Cardíacos/citologia , Fosfoproteínas/genética , Fosforilação/fisiologia , Estrutura Terciária de Proteína , Ratos , ATPase Trocadora de Sódio-Potássio/genética
13.
Plant Physiol ; 151(2): 955-65, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19666706

RESUMO

The quality control of mRNA maturation is a highly regulated process that surveys pre-mRNA integrity and eliminates improperly matured pre-mRNAs. In nature, certain viruses regulate the expression of their genes by hijacking the endogenous RNA quality control machinery. We demonstrate that the inclusion of 5' splice sites within the 3'-untranslated region of a reporter gene in plants alters the pre-mRNA cleavage and polyadenylation process, resulting in pre-mRNA degradation, exemplifying a regulatory mechanism conserved between kingdoms. Altered pre-mRNA processing was associated with an inhibition of homologous gene expression in trans and the preferential accumulation of 24-nucleotide (nt) short-interfering RNAs (siRNAs) as opposed to 21-nt siRNA subspecies, suggesting that degradation of the aberrant pre-mRNA involves the silencing machinery. However, gene expression was not restored by coexpression of a silencing suppressor or in an RNA-dependent RNA polymerase (RDR6)-deficient background despite reduced 24-nt siRNA accumulation. Our data highlight a complex cross talk between the quality control RNA machinery, 3'-end pre-mRNA maturation, and RNA-silencing pathways capable of discriminating among different types of aberrant RNAs.


Assuntos
Regulação da Expressão Gênica de Plantas , Nicotiana/genética , Interferência de RNA , Sítios de Splice de RNA/genética , RNA de Plantas/metabolismo , Regiões 3' não Traduzidas/genética , Técnicas de Silenciamento de Genes , Genes de Plantas , Proteínas de Fluorescência Verde/metabolismo , Mutagênese Insercional , Conformação de Ácido Nucleico , Poliadenilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , Supressão Genética , Tombusvirus/genética
14.
Plant Biotechnol J ; 5(6): 827-34, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17764517

RESUMO

Plant parasitic nematodes cause significant damage to crops on a worldwide scale. These nematodes are often soil dwelling but rely on plants for food and to sustain them during reproduction. Complex interactions occur between plants and nematodes during the nematode life cycle with plant roots developing specialized feeding structures through which nematodes withdraw nutrients. Here we describe a novel method for delivering macromolecules to feeding nematodes using a virus-based vector [tobacco rattle virus (TRV)]. We show that the parasitic nematode Heterodera schachtii will ingest fluorescent proteins transiently expressed in plant roots infected with a TRV construct carrying the appropriate protein sequence. A prerequisite for this delivery is the presence of replicating virus in root tips prior to the formation of nematode-induced syncytia. We show also that TRV vectors expressing nematode gene sequences can be used to induce RNAi in the feeding nematodes.


Assuntos
Peptídeos/metabolismo , Controle Biológico de Vetores , Vírus de Plantas/metabolismo , RNA de Cadeia Dupla , Tylenchoidea , Animais , Arabidopsis/virologia , Comportamento Alimentar , Expressão Gênica , Células Gigantes , Interferência de RNA , Nicotiana/virologia
15.
Plant Mol Biol ; 59(4): 647-61, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16244913

RESUMO

In this study we analyse several aspects of cytoplasmic RNA silencing by agroinfiltration of DNA constructs encoding single- and double-stranded RNAs derived from a GFP transgene and from the endogenous Virp1 gene. Both types of inductors resulted after 2-4 days in much higher concentration of siRNAs in the agroinfiltrated zone than normally seen during systemic silencing. More specifically, infiltration of two transgene hairpin constructs resulted in elevated levels of siRNAs. However, differences between the two constructs were observed: the antisense-sense arrangement was more effective than the sense-antisense order. For both double-stranded forms, we observed a relative increase of the 24-mer size class of siRNAs. When a comparable hairpin construct of the endogenous Virp1 gene was assayed, the portion of the 24-mer siRNA class remained low as observed for all kinds of single-stranded inducers. The lack of increase of Virp1-derived 24-mers was independent of the expression level, as demonstrated by agroinfiltration into a transgenic plant that overexpressed Virp1 and showed the same pattern. Using transducer constructs, we could detect within a week transitive silencing from GFP to GUS sequences in the infiltrated zone and in either direction 5'-3' and 3'-5'. Conversely, for the endogenous Virp1 gene neither transitive silencing nor the induction of systemic silencing could be observed. These results are discussed in view of the current models of RNA silencing.


Assuntos
Regulação da Expressão Gênica de Plantas , Engenharia Genética , Nicotiana/classificação , Nicotiana/genética , Folhas de Planta/genética , Interferência de RNA , Agrobacterium tumefaciens/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Plantas Geneticamente Modificadas , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transgenes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA