Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neurobiol Stress ; 11: 100176, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31236436

RESUMO

The endocannabinoid (eCB) system has been implicated in a variety of physiological functions due to abundant expression of its receptors and endogenous ligands in the central nervous system. Substantial progress has been made in understanding how the eCB system influences the brain norepinephrine (NE) system, an important neurochemical target in the continued development of new therapies for stress-induced psychiatric disorders. We, and others, have characterized the neuroanatomical, biochemical and pharmacological effects of cannabinoid receptor modulation on brain noradrenergic circuitry and defined how molecular elements of the eCB system are positioned to directly impact the locus coeruleus (LC)-prefrontal cortex pathway, a neural circuit well recognized for contributing to symptoms of hyperarousal, a key pathophysiological feature of stress-related disorders. We also described molecular and electrophysiological properties of LC noradrenergic neurons and NE release in the medial prefrontal cortex under conditions of cannabinoid type 1 receptor deletion. Finally, we identified how stress influences cannabinoid modulation of the coeruleo-cortical pathway. A number of significant findings emerged from these studies that will be summarized in the present review and have important implications for clinical studies targeting the eCB system in the treatment of stress-induced psychiatric disorders.

2.
Eur J Neurosci ; 48(5): 2118-2138, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30103253

RESUMO

Cannabinoids are capable of modulating mood, arousal, cognition and behavior, in part via their effects on the noradrenergic nucleus locus coeruleus (LC). Dysregulation of LC signaling and norepinephrine (NE) efflux in the medial prefrontal cortex (mPFC) can lead to the development of psychiatric disorders, and CB1r deletion results in alterations of α2- and ß1-adrenoceptors in the mPFC, suggestive of increased LC activity. To determine how CB1r deletion alters LC signaling, whole-cell patch-clamp electrophysiology was conducted in LC-NE neurons of male and female wild type (WT) and CB1r-knock out (KO) mice. CB1r deletion caused a significant increase in LC-NE excitability and input resistance in male but not female mice when compared to WT. CB1r deletion also caused adaptations in several indices of noradrenergic function. CB1r/CB2r-KO male mice had a significant increase in cortical NE levels and tyrosine hydroxylase and CRF levels in the LC compared to WT males. CB1r/CB2r-KO female mice showed a significant increase in LC α2-AR levels compared to WT females. To further probe actions of the endocannabinoid system as an anti-stress neuromediator, the effect of CB1r deletion on CRF-induced responses in the LC was investigated. The increase in LC-NE excitability observed in male and female WT mice following CRF (300 nM) bath application was not observed in CB1r-KO mice. These results indicate that cellular adaptations following CB1r deletion cause a disruption in LC-NE signaling in males but not females, suggesting underlying sex differences in compensatory mechanisms in KO mice as well as basal endocannabinoid regulation of LC-NE activity.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Norepinefrina/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Animais , Canabinoides/metabolismo , Feminino , Locus Cerúleo/efeitos dos fármacos , Masculino , Camundongos Knockout , Neurônios/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Receptor CB1 de Canabinoide/deficiência , Caracteres Sexuais , Tirosina 3-Mono-Oxigenase/metabolismo
3.
Brain Struct Funct ; 222(7): 3007-3023, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28255675

RESUMO

The noradrenergic system has been shown to play a key role in the regulation of stress responses, arousal, mood, and emotional states. Corticotropin-releasing factor (CRF) is a primary mediator of stress-induced activation of noradrenergic neurons in the nucleus locus coeruleus (LC). The endocannabinoid (eCB) system also plays a key role in modulating stress responses, acting as an "anti-stress" neuro-mediator. In the present study, we investigated the cellular sites for interactions between the cannabinoid receptor type 1 (CB1r) and CRF in the LC. Immunofluorescence and high-resolution immunoelectron microscopy showed co-localization of CB1r and CRF in both the core and peri-LC areas. Semi-quantitative analysis revealed that 44% (208/468) of CRF-containing axon terminals in the core and 35% (104/294) in the peri-LC expressed CB1r, while 18% (85/468) of CRF-containing axon terminals in the core and 6.5% (19/294) in the peri-LC were presynaptic to CB1r-containing dendrites. In the LC core, CB1r + CRF axon terminals were more frequently of the symmetric (inhibitory) type; while in the peri-LC, a majority were of the asymmetric (excitatory) type. Triple label immunofluorescence results supported the ultrastructural analysis indicating that CB1r + CRF axon terminals contained either gamma amino butyric acid or glutamate. Finally, anterograde transport from the central nucleus of the amygdala revealed that CRF-amygdalar afferents projecting to the LC contain CB1r. Taken together, these results indicate that the eCB system is poised to directly modulate stress-integrative heterogeneous CRF afferents in the LC, some of which arise from limbic sources.


Assuntos
Neurônios Adrenérgicos/metabolismo , Vias Aferentes/fisiologia , Hormônio Liberador da Corticotropina/metabolismo , Locus Cerúleo/citologia , Receptor CB1 de Canabinoide/metabolismo , Neurônios Adrenérgicos/ultraestrutura , Animais , Ácido Glutâmico/metabolismo , Locus Cerúleo/metabolismo , Locus Cerúleo/ultraestrutura , Masculino , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/ultraestrutura , Coloração pela Prata , Sinapses/metabolismo , Sinapses/ultraestrutura , Sinaptofisina/metabolismo , Ácido gama-Aminobutírico/metabolismo
4.
Expert Opin Drug Discov ; 10(1): 17-36, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25488672

RESUMO

INTRODUCTION: The endocannabinoid (eCB) system plays an important role in the control of mood, and its dysregulation has been implicated in several psychiatric disorders. Targeting the eCB system appears to represent an attractive and novel approach to the treatment of depression and other mood disorders. However, several failed clinical trials have diminished enthusiasm for the continued development of eCB-targeted therapeutics for psychiatric disorders, despite the encouraging preclinical data and promising preliminary results obtained with the synthetic cannabinoid nabilone for treating post-traumatic stress disorder. AREAS COVERED: This review describes the eCB system's role in modulating cell signaling within the brain. There is a specific focus on eCB's regulation of monoamine neurotransmission and the stress axis, as well as how dysfunction of this interaction can contribute to the development of psychiatric disorders. Additionally, the review provides discussion on compounds and drugs that target this system and might prove to be successful for the treatment of mood-related psychiatric disorders. EXPERT OPINION: The discovery of increasingly selective modulators of CB receptors should enable the identification of optimal therapeutic strategies. It should also maximize the likelihood of developing safe and effective treatments for debilitating psychiatric disorders.


Assuntos
Antipsicóticos/uso terapêutico , Descoberta de Drogas/métodos , Endocanabinoides/metabolismo , Transtornos Mentais/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Afeto/efeitos dos fármacos , Animais , Antipsicóticos/química , Antipsicóticos/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Humanos , Transtornos Mentais/metabolismo , Transtornos Mentais/psicologia , Estrutura Molecular , Receptores de Canabinoides/metabolismo , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Estresse Psicológico/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA