Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Metab ; 32(5): 889-900.e7, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33147486

RESUMO

Differential WNT and Notch signaling regulates differentiation of Lgr5+ crypt-based columnar cells (CBCs) into intestinal cell lineages. Recently we showed that mitochondrial activity supports CBCs, while adjacent Paneth cells (PCs) show reduced mitochondrial activity. This implies that CBC differentiation into PCs involves a metabolic transition toward downregulation of mitochondrial dependency. Here we show that Forkhead box O (FoxO) transcription factors and Notch signaling interact in determining CBC fate. In agreement with the organoid data, Foxo1/3/4 deletion in mouse intestine induces secretory cell differentiation. Importantly, we show that FOXO and Notch signaling converge on regulation of mitochondrial fission, which in turn provokes stem cell differentiation into goblet cells and PCs. Finally, scRNA-seq-based reconstruction of CBC differentiation trajectories supports the role of FOXO, Notch, and mitochondria in secretory differentiation. Together, this points at a new signaling-metabolic axis in CBC differentiation and highlights the importance of mitochondria in determining stem cell fate.


Assuntos
Células Caliciformes , Intestinos/citologia , Mitocôndrias/metabolismo , Celulas de Paneth , Células-Tronco , Animais , Diferenciação Celular , Linhagem Celular , Fatores de Transcrição Forkhead/metabolismo , Células Caliciformes/citologia , Células Caliciformes/metabolismo , Camundongos , Dinâmica Mitocondrial , Celulas de Paneth/citologia , Celulas de Paneth/metabolismo , Receptores Notch/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
2.
Proc Natl Acad Sci U S A ; 115(17): E3996-E4005, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29632210

RESUMO

Wnt/ß-catenin signaling controls development and adult tissue homeostasis by regulating cell proliferation and cell fate decisions. Wnt binding to its receptors Frizzled (FZD) and low-density lipoprotein-related 6 (LRP6) at the cell surface initiates a signaling cascade that leads to the transcription of Wnt target genes. Upon Wnt binding, the receptors assemble into large complexes called signalosomes that provide a platform for interactions with downstream effector proteins. The molecular basis of signalosome formation and regulation remains elusive, largely due to the lack of tools to analyze its endogenous components. Here, we use internally tagged Wnt3a proteins to isolate and characterize activated, endogenous Wnt receptor complexes by mass spectrometry-based proteomics. We identify the single-span membrane protein TMEM59 as an interactor of FZD and LRP6 and a positive regulator of Wnt signaling. Mechanistically, TMEM59 promotes the formation of multimeric Wnt-FZD assemblies via intramembrane interactions. Subsequently, these Wnt-FZD-TMEM59 clusters merge with LRP6 to form mature Wnt signalosomes. We conclude that the assembly of multiprotein Wnt signalosomes proceeds along well-ordered steps that involve regulated intramembrane interactions.


Assuntos
Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Via de Sinalização Wnt/fisiologia , Proteína Wnt3A/metabolismo , Animais , Células HEK293 , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteínas de Membrana/genética , Camundongos , Complexos Multiproteicos/genética , Proteínas do Tecido Nervoso/genética , Proteína Wnt3A/genética
3.
Nat Cell Biol ; 14(12): 1305-13, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23178881

RESUMO

The primary embryonic axes in flies, frogs and fish are formed through translational regulation of localized transcripts before fertilization. In Drosophila melanogaster, the axes are established through the transport and translational regulation of gurken (grk) and bicoid (bcd) messenger RNA in the oocyte and embryo. Both transcripts are translationally silent while being localized within the oocyte along microtubules by cytoplasmic dynein. Once localized, grk is translated at the dorsoanterior of the oocyte to send a TGF-α signal to the overlying somatic cells. In contrast, bcd is translationally repressed in the oocyte until its activation in early embryos when it forms an anteroposterior morphogenetic gradient. How this differential translational regulation is achieved is not fully understood. Here, we address this question using ultrastructural analysis, super-resolution microscopy and live-cell imaging. We show that grk and bcd ribonucleoprotein (RNP) complexes associate with electron-dense bodies that lack ribosomes and contain translational repressors. These properties are characteristic of processing bodies (P bodies), which are considered to be regions of cytoplasm where decisions are made on the translation and degradation of mRNA. Endogenous grk mRNA forms dynamic RNP particles that become docked and translated at the periphery of P bodies, where we show that the translational activator Oo18 RNA-binding protein (Orb, a homologue of CEPB) and the anchoring factor Squid (Sqd) are also enriched. In contrast, an excess of grk mRNA becomes localized inside the P bodies, where endogenous bcd mRNA is localized and translationally repressed. Interestingly, bcd mRNA dissociates from P bodies in embryos following egg activation, when it is known to become translationally active. We propose a general principle of translational regulation during axis specification involving remodelling of transport RNPs and dynamic partitioning of different transcripts between the translationally active edge of P bodies and their silent core.


Assuntos
Padronização Corporal/fisiologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , RNA Mensageiro/metabolismo , Animais , Padronização Corporal/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Imunofluorescência , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hibridização in Situ Fluorescente , Microscopia Eletrônica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fator de Crescimento Transformador alfa/genética , Fator de Crescimento Transformador alfa/metabolismo
4.
EMBO J ; 30(18): 3684-700, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21847093

RESUMO

RNAi screening for kinases regulating the functional organization of the early secretory pathway in Drosophila S2 cells has identified the atypical Mitotic-Associated Protein Kinase (MAPK) Extracellularly regulated kinase 7 (ERK7) as a new modulator. We found that ERK7 negatively regulates secretion in response to serum and amino-acid starvation, in both Drosophila and human cells. Under these conditions, ERK7 turnover through the proteasome is inhibited, and the resulting higher levels of this kinase lead to a modification in a site within the C-terminus of Sec16, a key ER exit site component. This post-translational modification elicits the cytoplasmic dispersion of Sec16 and the consequent disassembly of the ER exit sites, which in turn results in protein secretion inhibition. We found that ER exit site disassembly upon starvation is TOR complex 1 (TORC1) independent, showing that under nutrient stress conditions, cell growth is not only inhibited at the transcriptional and translational levels, but also independently at the level of secretion by inhibiting the membrane flow through the early secretory pathway. These results reveal the existence of new signalling circuits participating in the complex regulation of cell growth.


Assuntos
Proteínas de Drosophila/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica , Proteínas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Linhagem Celular , Drosophila , Microscopia de Fluorescência , Microscopia Imunoeletrônica
5.
Nat Protoc ; 5(4): 678-87, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20360763

RESUMO

This protocol describes the combination of in situ hybridization (ISH) with cryo-immunolabeling methods to allow the simultaneous detection at the ultrastructural level of mRNAs and proteins. The procedure consists of five steps and takes 4-5 d: (i) acquisition of ultrathin frozen sections of chemically fixed tissues or cells; (ii) hybridization of the sections with digoxigenin (DIG) or biotin-labeled RNA probes; (iii) detection of the bound probe with antibodies and protein A-gold (PAG); (iv) labeling of proteins of interest (optional); and (v) visualization by transmission electron microscopy (immuno-electron microscopy (IEM)). This technique allows the simultaneous detection of endogenous/overexpressed/injected RNAs and proteins while preserving the cell ultrastructure. The protocol is also suitable for mRNA detection on semi-thin frozen sections in combination with immunofluorescence. The localization of targeted transcripts, such as gurken and oskar mRNA in the Drosophila oocyte, and of structural elements and proteins that mediate their localization have been revealed using this technique.


Assuntos
Hibridização In Situ/métodos , Microscopia Imunoeletrônica/métodos , RNA Mensageiro/metabolismo , Animais , Drosophila/genética , Drosophila/metabolismo , Drosophila/ultraestrutura , Proteínas de Drosophila/genética , Feminino , Secções Congeladas , Genes de Insetos , Oócitos/metabolismo , Oócitos/ultraestrutura , RNA Mensageiro/genética , Fator de Crescimento Transformador alfa/genética
6.
Development ; 137(1): 169-76, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20023172

RESUMO

Localization of bicoid mRNA to the anterior of the Drosophila oocyte is essential for patterning the anteroposterior body axis in the early embryo. bicoid mRNA localizes in a complex multistep process involving transacting factors, molecular motors and cytoskeletal components that remodel extensively during the lifetime of the mRNA. Genetic requirements for several localization factors, including Swallow and Staufen, are well established, but the precise roles of these factors and their relationship to bicoid mRNA transport particles remains unresolved. Here we use live cell imaging, super-resolution microscopy in fixed cells and immunoelectron microscopy on ultrathin frozen sections to study the distribution of Swallow, Staufen, actin and dynein relative to bicoid mRNA during late oogenesis. We show that Swallow and bicoid mRNA are transported independently and are not colocalized at their final destination. Furthermore, Swallow is not required for bicoid transport. Instead, Swallow localizes to the oocyte plasma membrane, in close proximity to actin filaments, and we present evidence that Swallow functions during the late phase of bicoid localization by regulating the actin cytoskeleton. In contrast, Staufen, dynein and bicoid mRNA form nonmembranous, electron dense particles at the oocyte anterior. Our results exclude a role for Swallow in linking bicoid mRNA to the dynein motor. Instead we propose a model for bicoid mRNA localization in which Swallow is transported independently by dynein and contributes indirectly to bicoid mRNA localization by organizing the cytoskeleton, whereas Staufen plays a direct role in dynein-dependent bicoid mRNA transport.


Assuntos
Actinas/fisiologia , Proteínas de Drosophila/fisiologia , Dineínas/fisiologia , Proteínas de Homeodomínio/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/fisiologia , Transativadores/genética , Actinas/genética , Actinas/metabolismo , Animais , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Dineínas/genética , Embrião não Mamífero/metabolismo , Embrião não Mamífero/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hibridização In Situ , Microscopia de Fluorescência , Microscopia Imunoeletrônica , Oócitos/metabolismo , Oócitos/ultraestrutura , Oogênese/genética , Oogênese/fisiologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
7.
Mol Biol Cell ; 19(10): 4352-65, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18614796

RESUMO

tER sites are specialized cup-shaped ER subdomains characterized by the focused budding of COPII vesicles. Sec16 has been proposed to be involved in the biogenesis of tER sites by binding to COPII coat components and clustering nascent-coated vesicles. Here, we show that Drosophila Sec16 (dSec16) acts instead as a tER scaffold upstream of the COPII machinery, including Sar1. We show that dSec16 is required for Sar1-GTP concentration to the tER sites where it recruits in turn the components of the COPII machinery to initiate coat assembly. Last, we show that the dSec16 domain required for its localization maps to an arginine-rich motif located in a nonconserved region. We propose a model in which dSec16 binds ER cups via its arginine-rich domain, interacts with Sar1-GTP that is generated on ER membrane by Sec12 and concentrates it in the ER cups where it initiates the formation of COPII vesicles, thus acting as a tER scaffold.


Assuntos
Arginina/química , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas de Transporte Vesicular/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteínas de Drosophila/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Frações Subcelulares/metabolismo , Proteínas de Transporte Vesicular/metabolismo
8.
Dev Cell ; 12(4): 543-55, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17419993

RESUMO

In Drosophila, localized activity of oskar at the posterior pole of the oocyte induces germline and abdomen formation in the embryo. Oskar has two isoforms, a short isoform encoding the patterning determinant and a long isoform of unknown function. Here, we show by immuno-electron microscopy that the two Oskar isoforms have different subcellular localizations in the oocyte: Short Oskar mainly localizes to polar granules, and Long Oskar is specifically associated with endocytic membranes along the posterior cortex. Our cell biological and genetic analyses reveal that Oskar stimulates endocytosis, and that its two isoforms are required to regulate this process. Furthermore, we describe long F-actin projections at the oocyte posterior pole that are induced by and intermingled with Oskar protein. We propose that Oskar maintains its localization at the posterior pole through dual functions in regulating endocytosis and F-actin dynamics.


Assuntos
Actinas/metabolismo , Polaridade Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Endocitose , Oócitos/metabolismo , Animais , Animais Geneticamente Modificados , Membrana Celular/metabolismo , Clatrina/metabolismo , Clatrina/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Feminino , Técnicas In Vitro , Microscopia Imunoeletrônica , Modelos Biológicos , Oócitos/fisiologia , Oócitos/ultraestrutura , Isoformas de Proteínas , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA