Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 11(35): 8422-8432, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37563960

RESUMO

Visualization of a protein in its native form and environment without any interference has always been a challenging task. Contrary to the assumption that protein surfaces are smooth, they are in fact highly irregular with undulating surfaces. Hence, in this study, we have tackled this ambiguous nature of the 'surface' of a protein by considering the 'effective' protein surface (EPS) with respect to its interaction with the geometrically well-defined and structurally inert anionic molecule [3,3'-Co(1,2-C2B9H11)2]-, abbreviated as [o-COSAN]-, whose stability, propensity for amine residues, and self-assembling abilities are well reported. This study demonstrates the intricacies of protein surfaces exploiting simple electrochemical measurements using a 'small molecule' redox-active probe. This technique offers the advantage of not utilizing any harsh experimental conditions that could alter the native structure of the protein and hence the protein integrity is retained. Identification of the amino acid residues which are most involved in the interactions with [3,3'-Co(1,2-C2B9H11)2]- and how a protein's environment affects these interactions can help in gaining insights into how to modify proteins to optimize their interactions particularly in the fields of drug design and biotechnology. In this research, we have demonstrated that [3,3'-Co(1,2-C2B9H11)2]- anionic small molecules are excellent candidates for studying and visualizing protein surfaces in their natural environment and allow proteins to be classified according to the surface composition, which imparts their properties. [3,3'-Co(1,2-C2B9H11)2]- 'viewed' each protein surface differently and hence has the potential to act as a simple and easy to handle cantilever for measuring and picturing protein surfaces.


Assuntos
Aminoácidos , Proteínas de Membrana , Eletroquímica , Aminas
2.
Dalton Trans ; 51(18): 7188-7209, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35470838

RESUMO

The Na[3,3'-Fe(8-I-1,2-C2B9H10)2] and Na[2,2'-M(1,7-C2B9H11)] (M = Co3+, Fe3+) small molecules are synthesized and the X-ray structures of [(H3O)(H2O)5][2,2'-Co(1,7-C2B9H11)2] and [Cs(MeCN)][8,8'-I2-Fe(1,2 C2B9H10)2], both displaying a transoid conformation of the [M(C2B9)2]- framework, are reported. Importantly, the supramolecular structure of [(H3O)(H2O)5][2,2'-Co(1,7-C2B9H11)2] presents 2D layers leading to a lamellar arrangement of the anions while the cation layers form polymeric water rings made of six- and four-membered rings of water molecules connected via OH⋯H hydrogen bonds; B-H⋯O contacts connect the cationic and anionic layers. Herein, we highlight the influence of the ligand isomers (ortho-/meta-), the metal effect (Co3+/Fe3+) on the same isomer, as well as the influence of the presence of the iodine atoms on the physical-chemical and biological properties of these molecules as antimicrobial agents to tackle antibiotic-resistant bacteria, which were tested with four Gram-positive bacteria, five Gram-negative bacteria, and three Candida albicans strains that have been responsible for human infections. We have demonstrated an antimicrobial effect against Candida species (MIC of 2 and 3 nM for Na[3,3'-Co(8-I-1,2-C2B9H10)2] and Na[2,2'-Co(1,7-C2B9H11)2], respectively), and against Gram-positive and Gram-negative bacteria, including multiresistant MRSA strains (MIC of 6 nM for Na[3,3'-Co(8-I-1,2-C2B9H10)2]). The selectivity index for antimicrobial activity of Na[3,3'-Co(1,2-C2B9H11)2] and Na[3,3'-Co(8-I-1,2-C2B9H10)2] compounds is very high (165 and 1180, respectively), which reveals that these small anionic metallacarborane molecules may be useful to tackle antibiotic-resistant bacteria. Moreover, we have demonstrated that the outer membrane of Gram-negative bacteria constitutes an impermeable barrier for the majority of these compounds. Nonetheless, the addition of two iodine groups in the structure of the parent Na[3,3'-Co(1,2-C2B9H11)2] had an improved effect (3-7 times) against Gram-negative bacteria. Possibly the changes in their physical-chemical properties make the meta-isomers and the ortho-di-iodinated small molecules more permeable for crossing this barrier. It should be emphasized that the most active metallabis(dicarbollide) small molecules are both transoid conformers in contrast to the ortho- [3,3'-Co(1,2-C2B9H11)2]- that is cisoid. The fact that these small molecules cross the mammalian membrane and have antimicrobial properties but low toxicity for mammalian cells (high selectivity index, SI) represents a promising tool to treat infectious intracellular bacteria. Since there is an urgent need for antibiotic discovery and development, this study represents a relevant advance in the field.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Iodo , Animais , Antibacterianos/química , Anti-Infecciosos/farmacologia , Bactérias , Infecções Bacterianas/tratamento farmacológico , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Humanos , Iodo/farmacologia , Mamíferos , Testes de Sensibilidade Microbiana , Água
3.
Chem Commun (Camb) ; 58(26): 4196-4199, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35274113

RESUMO

Ferrocene and its derivatives have been extensively used as an internal reference in electrochemical processes. Yet, they possess limitations such as solvent restrictions that require chemical modifications. In this regard, we have studied the use of metallacarboranes [3,3'-M(1,2-C2B9H11)2]- (M = Co, Fe) as general internal reference systems and have proven their suitability by thoroughly investigating their electrochemical properties in both aqueous and organic electrolytes without any derivatization.

4.
Cancers (Basel) ; 13(24)2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34944987

RESUMO

PURPOSE: The aim of our study was to assess if the sodium salt of cobaltabis(dicarbollide) and its di-iodinated derivative (Na[o-COSAN] and Na[8,8'-I2-o-COSAN]) could be promising agents for dual anti-cancer treatment (chemotherapy + BNCT) for GBM. METHODS: The biological activities of the small molecules were evaluated in vitro with glioblastoma cells lines U87 and T98G in 2D and 3D cell models and in vivo in the small model animal Caenorhabditis elegans (C. elegans) at the L4-stage and using the eggs. RESULTS: Our studies indicated that only spheroids from the U87 cell line have impaired growth after treatment with both compounds, suggesting an increased resistance from T98G spheroids, contrary to what was observed in the monolayer culture, which highlights the need to employ 3D models for future GBM studies. In vitro tests in U87 and T98G cells conclude that the amount of 10B inside the cells is enough for BNCT irradiation. BNCT becomes more effective on T98G after their incubation with Na[8,8'-I2-o-COSAN], whereas no apparent cell-killing effect was observed for untreated cells. CONCLUSIONS: These small molecules, particularly [8,8'-I2-o-COSAN]-, are serious candidates for BNCT now that the facilities of accelerator-based neutron sources are more accessible, providing an alternative treatment for resistant glioblastoma.

5.
Angew Chem Int Ed Engl ; 60(49): 25753-25757, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34562322

RESUMO

Cobaltabis(dicarbollide) anion ([o-COSAN]- ) is a well-known metallacarborane with multiple applications in a variety of fields. In aqueous solution, the cisoid rotamer is the most stable disposition in the ground state. The present work provides theoretical evidence on the possibility to photoinduce the rotation from the cisoid to the transoid rotamer, a conversion that can be reverted when the ground state is repopulated. The non-radiative decay mechanisms proposed in this work are coherent with the lack of fluorescence observed in 3D fluorescence mapping experiments performed on [o-COSAN]- and its derivatives. This phenomenon induced by light has the potential to destruct the vesicles and micelles cisoid [o-COSAN]- typically forms in aqueous solution, which could lead to promising applications, particularly in the field of nanomedicine.

6.
ACS Appl Mater Interfaces ; 12(50): 56372-56384, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33284598

RESUMO

A successful homogeneous photoredox catalyst has been fruitfully heterogenized on magnetic nanoparticles (MNPs) coated with a silica layer, keeping intact its homogeneous catalytic properties but gaining others due to the easy magnetic separation and recyclability. The amine-terminated magnetic silica nanoparticles linked noncovalently to H[3,3'-Co(1,2-C2B9H11)2]- (H[1]), termed MSNPs-NH2@H[1], are highly stable and do not produce any leakage of the photoredox catalyst H[1] in water. The magnetite MNPs were coated with SiO2 to provide colloidal stability and silanol groups to be tethered to amine-containing units. These were the MSNPs-NH2 on which was anchored, in water, the cobaltabis(dicarbollide) complex H[1] to obtain MSNPs-NH2@H[1]. Both MSNPs-NH2 and MSNPs-NH2@H[1] were evaluated to study the morphology, characterization, and colloidal stability of the MNPs produced. The heterogeneous MSNP-NH2@H[1] system was studied for the photooxidation of alcohols, such as 1-phenylethanol, 1-hexanol, 1,6-hexanediol, or cyclohexanol among others, using catalyst loads of 0.1 and 0.01 mol %. Surfactants were introduced to prevent the aggregation of MNPs, and cetyl trimethyl ammonium chloride was chosen as a surfactant. This provided adequate stability, without hampering quick magnetic separation. The results proved that the catalysis could be speeded up if aggregation was prevented. The recyclability of the catalytic system was demonstrated by performing 12 runs of the MSNPs-NH2@H[1] system, each one without loss of selectivity and yield. The cobaltabis(dicarbollide) catalyst supported on silica-coated magnetite nanoparticles has proven to be a robust, efficient, and easily reusable system for the photooxidation of alcohols in water, resulting in a green and sustainable heterogeneous catalytic system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA