Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798493

RESUMO

Neurotechnologies and genetic tools for dissecting neural circuit functions have advanced rapidly over the past decade, although the development of complementary pharmacological method-ologies has comparatively lagged. Understanding the precise pharmacological mechanisms of neuroactive compounds is critical for advancing basic neurobiology and neuropharmacology, as well as for developing more effective treatments for neurological and neuropsychiatric disorders. However, integrating modern tools for assessing neural activity in large-scale neural networks with spatially localized drug delivery remains a major challenge. Here, we present a dual microfluidic-photometry platform that enables simultaneous intracranial drug delivery with neural dynamics monitoring in the rodent brain. The integrated platform combines a wireless, battery-free, miniaturized fluidic microsystem with optical probes, allowing for spatially and temporally specific drug delivery while recording activity-dependent fluorescence using genetically encoded calcium indicators (GECIs), neurotransmitter sensors GRAB NE and GRAB DA , and neuropeptide sensors. We demonstrate the performance this platform for investigating neuropharmacological mechanisms in vivo and characterize its efficacy in probing precise mechanistic actions of neuroactive compounds across several rapidly evolving neuroscience domains.

2.
Neuron ; 112(11): 1764-1777.e5, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38537641

RESUMO

Comprehensive, continuous quantitative monitoring of intricately orchestrated physiological processes and behavioral states in living organisms can yield essential data for elucidating the function of neural circuits under healthy and diseased conditions, for defining the effects of potential drugs and treatments, and for tracking disease progression and recovery. Here, we report a wireless, battery-free implantable device and a set of associated algorithms that enable continuous, multiparametric physio-behavioral monitoring in freely behaving small animals and interacting groups. Through advanced analytics approaches applied to mechano-acoustic signals of diverse body processes, the device yields heart rate, respiratory rate, physical activity, temperature, and behavioral states. Demonstrations in pharmacological, locomotor, and acute and social stress tests and in optogenetic studies offer unique insights into the coordination of physio-behavioral characteristics associated with healthy and perturbed states. This technology has broad utility in neuroscience, physiology, behavior, and other areas that rely on studies of freely moving, small animal models.


Assuntos
Comportamento Animal , Optogenética , Tecnologia sem Fio , Animais , Comportamento Animal/fisiologia , Optogenética/métodos , Camundongos , Frequência Cardíaca/fisiologia , Masculino , Próteses e Implantes , Taxa Respiratória/fisiologia , Monitorização Fisiológica/métodos , Monitorização Fisiológica/instrumentação , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA