Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 14(23): 6237-6243, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37325154

RESUMO

Dynamic chiral superstructures are of vital importance for understanding the organization and function of chirality in biological systems. However, achieving high conversion efficiency for photoswitches in nanoconfined architectures remains challenging but fascinating. Herein, we report a series of dynamic chiral photoswitches based on supramolecular metallacages through the coordination-driven self-assembly of dithienylethene (DTE) units and octahedral zinc ions, thereby successfully achieving an ultrahigh photoconversion yield of 91.3% in nanosized cavities with a stepwise isomerization mechanism. Interestingly, the chiral inequality phenomenon is observed in metallacages, resulting from the intrinsic photoresponsive chirality in the closed form of the dithienylethene unit. Upon hierarchical organization, we establish a dynamic chiral system at the supramolecular level, featuring chiral transfer, amplification, induction, and manipulation. This study provides an intriguing idea to simplify and understand chiral science.

2.
J Am Chem Soc ; 141(46): 18467-18474, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31656065

RESUMO

The fast light-responsive dithienylethenes (DTEs) are one of the most attractive photochromic families because of their excellent thermal irreversibility and fatigue resistance. However, the all-visible-light-activated DTE system still remains challenging because most of them require the harmful high-energy ultraviolet light to trigger their photocyclization reaction. Here, we have for the first time borrowed a specific intramolecular proton transfer (IPT) process and rationally designed a series of all-visible-light-driven DTEs. Incorporating the IPT-functional group to DTE unit gives rise to an extra absorption band with a distinct red shift, which enables the photocyclization of DTEs under stimuli of visible light at 450 nm, as well as ensuring the desirable photoswitching efficiency. The isomerization from OH form to NH form induced by IPT can decrease the energy gap for excitation and photocyclization, thereby affording the all-visible-light-triggered photochromic performance, which can not only work well in a polar solvent system but also show its effectiveness in polymeric gel systems. In this regard, we can provide a general and reliable platform to construct all-visible-light-driven DTEs with excellent reversible photoswitching and broad applicability, especially with avoiding the use of harmful ultraviolet light to induce their photocyclization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA