Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; : e2400686, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864439

RESUMO

High-performance energy storage dielectrics capable of low/moderate field operation are vital in advanced electrical and electronic systems. However, in contrast to achievements in enhancing recoverable energy density (Wrec), the active realization of superior Wrec and energy efficiency (η) with giant energy-storage coefficient (Wrec/E) in low/moderate electric field (E) regions is much more challenging for dielectric materials. Herein, lead-free relaxor ferroelectrics are reported with giant Wrec/E designed with polymorphic heterogeneous polar structure. Following the guidance of Landau phenomenological theory and rational composition construction, the conceived (Bi0.5Na0.5)TiO3-based ternary solid solution that delivers giant Wrec/E of ≈0.0168 µC cm-2, high Wrec of ≈4.71 J cm-3 and high η of ≈93% under low E of 280 kV cm-1, accompanied by great stabilities against temperature/frequency/cycling number and excellent charging-discharging properties, which is ahead of most currently reported lead-free energy storage bulk ceramics measured at same E range. Atomistic observations reveal that the correlated coexisting local rhombohedral-tetragonal polar nanoregions embedded in the cubic matrix are constructed, which enables high polarization, minimized hysteresis, and significantly delayed polarization saturation concurrently, endowing giant Wrec/E along with high Wrec and η. These findings advance the superiority and feasibility of polymorphic nanodomains in designing highly efficient capacitors for low/moderate field-region practical applications.

2.
Sci Bull (Beijing) ; 67(12): 1243-1252, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36546154

RESUMO

Perovskite solar cells (pero-SCs) performance is essentially limited by severe non-radiative losses and ion migration. Although numerous strategies have been proposed, challenges remain in the basic understanding of their origins. Here, we report a dielectric-screening-enhancement effect for perovskite defects by using organic semiconductors with finely tuned molecular structures from the atoms level. Our method produced various perovskite films with high dielectric constant values, reduced charge capture regions, suppressed ion migration, and it provides an efficient charge transport pathway for suppressing non-radiative recombination beyond the passivation effect. The resulting pero-SCs showed a promising power conversion efficiency (PCE) of 23.35% with a high open-circuit voltage (1.22 V); and the 1-cm2 pero-SCs maintained an excellent PCE (21.93%), showing feasibility for scalable fabrication. The robust operational and thermal stabilities revealed that this method paved a new way to understand the degradation mechanism of pero-SCs, promoting the efficiency, stability and scaled fabrication of the pero-SCs.

3.
Adv Mater ; 34(14): e2110482, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35122342

RESUMO

The built-in electric field (BEF) intensity of silicon heterojunction solar cells can be easily enhanced by selective doping to obtain high power conversion efficiencies (PCEs), while it is challenging for perovskite solar cells (pero-SCs) because of the difficulty in doping perovskites in a controllable way. Herein, an effective method is reported to enhance the BEF of FA0.92 MA0.08 PbI3 perovskite by doping an organic ferroelectric material, poly(vinylidene fluoride):dabcoHReO4 (PVDF:DH) with high polarizability, that can be driven even by the BEF of the device itself. The polarization of PVDF:DH produces an additional electric field, which is maintained permanently, in a direction consistent with that of the BEF of the pero-SC. The BEF superposition can more sufficiently drive the charge-carrier transport and extraction, thus suppressing the nonradiative recombination occurring in the pero-SCs. Moreover, the PVDF:DH dopant benefits the formation of a mesoporous PbI2 film, via a typical two-step processing method, thereby promoting perovskite growth with high crystallinity and a few defects. The resulting pero-SC shows a promising PCE of 24.23% for a 0.062 cm2 device (certified PCE of 23.45%), and a remarkable PCE of 22.69% for a 1 cm2 device, along with significantly improved moisture resistances and operational stabilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA