Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(4)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37421063

RESUMO

BACKGROUND: Foodborne pathogenic bacteria threaten worldwide public health, and simple bacterial detection methods are in urgent need. Here, we established a lab-on-a-tube biosensor for simple, rapid, sensitive, and specific detection of foodborne bacteria. METHODS: A rotatable Halbach cylinder magnet and an iron wire netting with magnetic silica beads (MSBs) were used for simple and effective extraction and purification of DNA from the target bacteria, and recombinase-aided amplification (RAA) was combined with clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins12a(CRISPR-Cas12a) to amplify DNA and generate fluorescent signal. First, 15 mL of the bacterial sample was centrifuged, and the bacterial pellet was lysed by protease to release target DNA. Then, DNA-MSB complexes were formed as the tube was intermittently rotated and distributed uniformly onto the iron wire netting inside the Halbach cylinder magnet. Finally, the purified DNA was amplified using RAA and quantitatively detected by the CRISPR-Cas12a assay. RESULTS: This biosensor could quantitatively detect Salmonella in spiked milk samples in 75 min, with a lower detection limit of 6 CFU/mL. The fluorescent signal of 102 CFU/mL Salmonella Typhimurium was over 2000 RFU, while 104 CFU/mL Listeria monocytogenes, Bacillus cereus, and E. coli O157:H7 were selected as non-target bacteria and had signals less than 500 RFU (same as the negative control). CONCLUSIONS: This lab-on-a-tube biosensor integrates cell lysis, DNA extraction, and RAA amplification in one 15 mL tube to simplify the operation and avoid contamination, making it suitable for low-concentration Salmonella detection.

2.
Biosens Bioelectron ; 220: 114905, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36395735

RESUMO

Early finding of pathogens is significant to avoid foodborne diseases. Here, a novel lab-in-centrifugal-tube colorimetric biosensor was reported for Salmonella typhimurium detection using immune nickel nanowires (NNWs) to form capture nets for specific bacterial separation, gold@platinum nanozymes (GPNs) to mark target bacteria for effective signal amplification, and a smartphone App to analyze color change for quantitative bacterial determination. A 3D-printed cylindrical magnetic separator with air pressure self-regulating structure and NNW capture nets was elaboratively constructed and assembled inside the disposable centrifuge tube to simply perform the bacterial separation, label, wash, coloration and detection. Under optimal conditions, Salmonella typhimurium could be quantitatively detected in 2 h with a low detection limit of 21 CFU/mL. The recovery of target bacteria in spiked pork samples ranged from 87.0% to 97.6% with the averaged recovery of 93.9%. This biosensor was Affordable, Sensitive, Specific, User-friendly, Rapid and robust, Equipment-free and Deliverable to end-users (ASSURED), and had shown the potential for point-of-care testing of foodborne pathogens to ensure food safety.


Assuntos
Técnicas Biossensoriais , Contaminação de Alimentos , Bactérias , Colorimetria , Inocuidade dos Alimentos , Salmonella typhimurium , Microbiologia de Alimentos , Contaminação de Alimentos/análise
3.
Biosens Bioelectron ; 218: 114765, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36208529

RESUMO

In-field screening of pathogenic bacteria is important for preventing food poisoning. Here, a portable pipette-adapted biosensor using magnetic grid separation and nanocatalyst signal amplification was elaboratively developed for rapid detection of Salmonella typhimurium. A common pipette was innovatively adapted with multiple functions to complete the whole bacterial detection procedure, including mixing, separation, catalysis, washing, detection, analysis and display. The target bacteria were effectively captured by the immune magnetic nanobeads and labeled with immune gold@platinum nanocatalysts through pipette-blowing mixing to form the nanobeads-bacteria-nanocatalyst complexes, which were separated against the magnetic grid separation tip under the magnetic field. The pressure change resulting from oxygen production due to mimicking catalysis of hydrogen peroxide by these nanocatalysts on the complexes was quantified through measuring the moving duration of the conductive liquid in the pipette for bacteria determination. Under optimal conditions, this biosensor could detect target bacteria in 90 min with low detection limit of 180 CFU/mL. This pipette-adapted biosensor is affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free and deliverable to end-users (ASSURED), and has the potential for in-field testing of foodborne pathogens to ensure food safety, especially in resource-constrained areas.


Assuntos
Técnicas Biossensoriais , Microbiologia de Alimentos , Platina/análise , Contaminação de Alimentos/análise , Peróxido de Hidrogênio/análise , Salmonella typhimurium , Ouro/análise , Oxigênio/análise , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA