Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Res ; 284: 127732, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38677265

RESUMO

The HOG MAPK pathway mediates diverse cellular and physiological processes, including osmoregulation and fungicide sensitivity, in phytopathogenic fungi. However, the molecular mechanisms underlying HOG MAPK pathway-associated stress homeostasis and pathophysiological developmental events are poorly understood. Here, we demonstrated that the oxalate decarboxylase CsOxdC3 in Colletotrichum siamense interacts with the protein kinase kinase CsPbs2, a component of the HOG MAPK pathway. The expression of the CsOxdC3 gene was significantly suppressed in response to phenylpyrrole and tebuconazole fungicide treatments, while that of CsPbs2 was upregulated by phenylpyrrole and not affected by tebuconazole. We showed that targeted gene deletion of CsOxdC3 suppressed mycelial growth, reduced conidial length, and triggered a marginal reduction in the sporulation characteristics of the ΔCsOxdC3 strains. Interestingly, the ΔCsOxdC3 strain was significantly sensitive to fungicides, including phenylpyrrole and tebuconazole, while the CsPbs2-defective strain was sensitive to tebuconazole but resistant to phenylpyrrole. Additionally, infection assessment revealed a significant reduction in the virulence of the ΔCsOxdC3 strains when inoculated on the leaves of rubber tree (Hevea brasiliensis). From these observations, we inferred that CsOxdC3 crucially modulates HOG MAPK pathway-dependent processes, including morphogenesis, stress homeostasis, fungicide resistance, and virulence, in C. siamense by facilitating direct physical interactions with CsPbs2. This study provides insights into the molecular regulators of the HOG MAPK pathway and underscores the potential of deploying OxdCs as potent targets for developing fungicides.


Assuntos
Carboxiliases , Colletotrichum , Farmacorresistência Fúngica , Proteínas Fúngicas , Carboxiliases/genética , Carboxiliases/metabolismo , Colletotrichum/genética , Colletotrichum/efeitos dos fármacos , Colletotrichum/patogenicidade , Colletotrichum/enzimologia , Colletotrichum/crescimento & desenvolvimento , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungicidas Industriais/farmacologia , Regulação Fúngica da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Doenças das Plantas/microbiologia , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/genética , Virulência
2.
mBio ; 15(2): e0201523, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38197633

RESUMO

SCS7 is a fatty acid 2-hydroxylase required for the synthesis of inositol phosphorylceramide but is not essential for normal growth in Saccharomyces cerevisiae. Here, we demonstrate that the Colletotrichum siamense SCS7 homolog CsSCS7 plays a key role in hyphal growth. The CsSCS7 deletion mutant showed strong hyphal growth inhibition, small conidia, and marginally reduced sporulation and also resulted in a sharp reduction in the full virulence and increasing the fungicide sensitivity. The three protein domains (a cytochrome b5 domain, a transmembrane domain, and a hydroxylase domain) are important to CsSCS7 protein function in hyphal growth. The fatty acid assay results revealed that the CsSCS7 gene is important for balancing the contents of multiple mid-long- and short-chain fatty acids. Additionally, the retarded growth and virulence of C. siamense ΔCsSCS7 can be recovered partly by the reintroduction of homologous sequences from Magnaporthe oryzae and Fusarium graminearum but not SCS7 of S. cerevisiae. In addition, the spraying of C. siamense with naked CsSCS7-double-stranded RNA (dsRNAs), which leads to RNAi, increases the inhibition of hyphal growth and slightly decreases disease lesions. Then, we used nano material Mg-Al-layered double hydroxide as carriers to deliver dsRNA, which significantly enhanced the control effect of dsRNA, and the lesion area was obviously reduced. These data indicated that CsSCS7 is an important factor for hyphal growth and affects virulence and may be a potential control target in C. siamense and even in filamentous plant pathogenic fungi.IMPORTANCECsSCS7, which is homologous to yeast fatty acid 2-hydroxylase SCS7, was confirmed to play a key role in the hyphal growth of Colletotrichum siamense and affect its virulence. The CsSCS7 gene is involved in the synthesis and metabolism of fatty acids. Homologs from the filamentous fungi Magnaporthe oryzae and Fusarium graminearum can recover the retarded growth and virulence of C. siamense ΔCsSCS7. The spraying of double-stranded RNAs targeting CsSCS7 can inhibit hyphal growth and reduce the disease lesion area to some extent. After using nano material Mg-Al layered double hydroxide as carrier, the inhibition rates were significantly increased. We demonstrated that CsSCS7 is an important factor for hyphal growth and affects virulence and may be a potential control target in C. siamense and even in filamentous plant pathogenic fungi.


Assuntos
Ascomicetos , Colletotrichum , Proteínas Fúngicas , Fusarium , Proteínas Fúngicas/genética , Saccharomyces cerevisiae/metabolismo , Colletotrichum/genética , Oxigenases de Função Mista/genética , Ácidos Graxos , Hidróxidos , Peptídeos e Proteínas de Sinalização Intercelular
3.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139168

RESUMO

Plasma membrane H+-ATPases (PMAs) play an important role in the pathogenicity of pathogenic fungi. Lipid droplets are important storage sites for neutral lipids in fungal conidia and hyphae and can be used by plant pathogenic fungi for infection. However, the relationship between plasma membrane H+-ATPase, lipid droplets and virulence remains unclear. Here, we characterized a plasma membrane H+-ATPase, CsPMA2, that plays a key role in lipid droplet formation, appresorial development and virulence in C. siamense. Deletion of CsPMA2 impaired C. siamense conidial size, conidial germination, appressorial development and virulence but did not affect hyphal growth. ΔCsPMA2 increased the sensitivity of C. siamense to phytic acid and oxalic acid. CsPMA2 was localized to lipids on the plasma membrane and intracellular membrane. Deletion of CsPMA2 significantly inhibited the accumulation of lipid droplets and significantly affected the contents of some species of lipids, including 12 species with decreased lipid contents and 3 species with increased lipid contents. Furthermore, low pH can inhibit CsPMA2 expression and lipid droplet accumulation. Overall, our data revealed that the plasma membrane H+-ATPase CsPMA2 is involved in the regulation of lipid droplet formation and affects appressorial development and virulence in C. siamense.


Assuntos
Colletotrichum , Gotículas Lipídicas , Virulência , Gotículas Lipídicas/metabolismo , Proteínas Fúngicas/metabolismo , Lipídeos , Membrana Celular/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo
4.
Cell Rep Methods ; 3(3): 100415, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-37056376

RESUMO

Quantifying animal behavior is important for biological research. Identifying behaviors is the prerequisite of quantifying them. Current computational tools for behavioral quantification typically use high-level properties such as body poses to identify the behaviors, which constrains the information available for a holistic assessment. Here we report LabGym, an open-source computational tool for quantifying animal behaviors without this constraint. In LabGym, we introduce "pattern image" to represent the animal's motion pattern, in addition to "animation" that shows all spatiotemporal details of a behavior. These two pieces of information are assessed holistically by customizable deep neural networks for accurate behavior identifications. The quantitative measurements of each behavior are then calculated. LabGym is applicable for experiments involving multiple animals, requires little programming knowledge to use, and provides visualizations of behavioral datasets. We demonstrate its efficacy in capturing subtle behavioral changes in diverse animal species.


Assuntos
Comportamento Animal , Redes Neurais de Computação , Animais , Computadores , Movimento (Física)
5.
J Fungi (Basel) ; 8(9)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36135702

RESUMO

Previous studies of the lipid droplet-coating protein Cap20 in Colletotrichum show that it plays a key role in appressorium development and virulence. In this study, the hydrophobin CsHydr1, which contains a signal peptide of 19 amino acids and a hydrophobic domain (HYDRO), was shown to interact with CsCap20 in Colletotrichum siamense. The CsHydr1 deletion mutant showed slightly enhanced mycelial growth, small conidia, slow spore germination and appressoria formation, cell wall integrity and virulence. Like CsCAP20, CsHydr1 is also localized on the lipid droplet surface of C. siamense. However, when CsCap20 was absent, some CsHydr1 was observed in other parts. Quantitative lipid determination showed that the absence of either CsHydr1 or CsCap20 reduced the content of lipids in mycelia and conidia, while the effect of CsCap20 was more obvious; these results suggest that an interaction protein CsHydr1 of CsCap20 is localized on the lipid droplet surface and involved in lipid metabolism, which affects appressorium formation and virulence in C. siamense.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA