Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(43): 20762-20773, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39415319

RESUMO

A new type of phenanthroline carboxamide(DAPhen)-phosphate ester ligand (L1/L2) was synthesized for the selective separation of U(VI) over Th(IV). Liquid-liquid extraction experiments showed that the introduction of phosphate ester could increase the extraction ability of ligands for U(VI), especially L2, which showed high selectivity for the separation of U(VI) over Th(IV). The slope analysis indicated that L1 could form 1:1 and 1:2 complexes with U(VI) and 1:1 complexes with Th(IV). NMR titration revealed that the DAPhen unit of ligands combined with one U(VI) to form 1:1 complexes, and then the phosphate ester unit of the 1:1 complexes further combined with another U(VI) to form 1:2 complexes. Ligands provide only the DAPhen unit to Th(IV) to form 1:1 complexes. The crystal structures found 1:2 complexes of L1 and U(VI), 1:1 complexes of L2 and U(VI), and 1:1 complexes of L1 and Th(IV). The larger stability constant (log ß) of the 1:1 complexes of L2 with U(VI) than that of the 1:1 complexes of L1 with U(VI) showed that the binding ability of U(VI) with the DAPhen unit of L2 is stronger than that of U(VI) with the DAPhen unit of L1. This study provides new ideas for designing extractants with excellent properties.

2.
J Fluoresc ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120746

RESUMO

Conjugated polymers (CPs)-based near-infrared phototheranostics are receiving increasing attention due to their high molar extinction coefficient, wide emission wavelength, easy preparation and excellent biocompatibility. Herein, several new conjugated polymers with D2-D1-A structures were easily prepared through one-pot coupling using triphenylamine (D2) as well as thiophenes (D1) as electron donors and benzothiadiazole (A) as electron acceptors. Interesting, their optical performance and power conversion efficiency could be tuned by side chains on thiophenes (D1). The introduction of ethylenedioxy into D1 as side chain significantly improves fluorescence imaging brightness, photothermal conversion efficiency and hydrophilicity, and extends emission wavelength, which are beneficial for phototheranostic. The side chain modification provides new opportunity to design efficient phototheranostics without construction new fluorescent skeletons.

3.
ACS Appl Mater Interfaces ; 14(51): 57225-57234, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36525644

RESUMO

The bond linkages in covalent organic frameworks (COFs) partly determine its physical and chemical properties, thus affecting the photoreactive activity by influencing the generation of photoelectrons and the separation of excitons. Herein, pyrene-based amide COF 4,4',4″,4‴-(pyrene-1,3,6,8-tetrayl)tetrabenzaldehyde-3,8-diamino-6-phenylphenanthridine (TFPPy-DP) was synthesized by postsynthetic modification of imine COFs. Due to the introduction of oxygen atoms into the framework and the change in polarity, an increased number of photogenerated electrons and a wide band gap for amide COFs were found, hydrophilicity and dispersibility were prompted as well. Both imine and amide COF TFPPy-DP were applied in the photocatalytic reduction and removal of toxic U(VI) under visible light, the catalytic reduction equilibrium (91% removal percentage of 238 ppm U at pH 3) was achieved by imine COFs with 10 h of irradiation, while amide COFs only took 2 h of irradiation (82% removal percentage). The much faster photocatalytic reduction rate of U(VI) can be attributed to the fact that amide COF TFPPy-DP retained crystallinity and permanent porosity and exhibited lower electrochemical impedance and enhanced charge separation and accumulation. Further electronic excitation analysis based on time-dependent density functional theory calculations revealed that the intramolecular charge-transfer effect in amide TFPPy-DP enhanced its photocatalytic rate.

4.
Dalton Trans ; 51(43): 16448-16452, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36300332

RESUMO

A rare case of semiconducting actinide-based metal-organic framework SCU-125 was designed and synthesized. As a result of the lack of two coordination sites in the plane of the tetrathiafulvalene tetrabenzoate (TTFTB) molecule, a defective kgd network was formed. The electrical conductivity of SCU-125 was measured to be 2.2(2) × 10-7 S cm-1 at 25 °C ± 2 °C.

5.
Inorg Chem ; 61(34): 13256-13260, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-35969238

RESUMO

Hybrid metal halide perovskites are extensively synthesized using p- and d-elements. However, the properties of hybrid halide perovskites involving 5f-elements are still elusive. Herein, we first report the semiconductive property of a uranium-bearing hybrid halide perovskite, [N(C2H5)4]2UCl6 (EAUCl). Single crystal X-ray crystallography demonstrates that EAUCl adopts a zero-dimensional molecular structure consisting of isolated [UCl6]2- anions and organic cations. The intrinsically semiconductive property endows EAUCl with obvious charge transport and photoconductivity, with a high carrier mobility lifetime (µτ) product of 9.91 × 10-4 cm2/V and a photocurrent on-off ratio of 380 under X-ray excitation. Theoretical calculations corroborate that the U 5f orbitals are involved in electron transitions and the formation of band structure.

6.
J Hazard Mater ; 426: 127851, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34838353

RESUMO

Photocatalytic reduction and removal of toxic uranium(VI) from aqueous solution is a highly economic, non-pollutant and efficient strategy. However, most uranium containing waste waters are highly acidic, but current photocatalysts are still restricted in slightly acidic or neutral media (pH ≥ 4). Herein, a conjugated microporous polymer (CMP), pTTT-Ben, was used for visible light driven photocatalytic reduction of U(VI) in highly acidic condition (pH = 1). A high uranium removal capacity (4710 mg/g) was achieved. The structural information of reduced uranium was investigated by X-ray photoelectron spectroscopy (XPS) and extended X-ray absorption fine structure (EXAFS), revealing the amorphous U(IV) hydrate complex, with an additional interaction between U(IV) and nitrogen atoms on pTTT-Ben. In addition, pTTT-Ben also showed excellent photocatalytic U(VI) reduction performance under natural sunlight irradiation.

7.
Inorg Chem ; 60(18): 14212-14220, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34465086

RESUMO

Three octyl-extended bis-triamide extractants (L1-L3) were designed and synthesized for the selective solvent extraction of Th(IV) over U(VI) in a kerosene-HNO3 system. L1 and L2 exhibited good extraction property and selectivity toward Th(IV) over U(VI) and reached extraction equilibrium within 10 min. In a wide range of a HNO3 concentration from 0.1 to 3.0 M, the separation factor of Th(IV) over U(VI) (SFTh/U) of L1 and L2 ranged from 12.1 ± 1.6 to 123.0 ± 20.2 and 15.2 ± 2.4 to 88.1 ± 14.9, respectively. Slope analysis indicated that Th(IV) was extracted as different species under different HNO3 concentrations, in which the slopes were 2.08 ± 0.20, 1.61 ± 0.03, and 1.54 ± 0.03 for L1 and 2.37 ± 0.22, 2.07 ± 0.17, and 1.76 ± 0.18 for L2 under 0.1, 1.0, and 3.0 M HNO3, respectively. A continuous variation method (Job plot) illustrated a 1.5:1 ligand/thorium (L/Th) ratio in a methanol phase, indicating that L1/L2 and Th(IV) could form mixed 1:1 and 2:1 L/Th extracted complexes. Extended X-ray absorption fine structure (EXAFS) and density functional theory (DFT) calculations revealed that the extracted complexes of L1 and L2 with Th during the extraction process at 0.1 M HNO3 were [2L1·Th·3(NO3)]+ and [2L2·Th·3(NO3)]+.

8.
Angew Chem Int Ed Engl ; 60(22): 12396-12405, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33682274

RESUMO

Compared to the current mainstream rigid covalent organic frameworks (COFs) linked by imine bonds, flexible COFs have certain advantages of elasticity and self-adaptability, but their construction and application are greatly limited by the complexity in synthesis and difficulty in obtaining regular structure. Herein, we reported for the first time a series of flexible amine-linked COFs with high crystallinity synthesized by formic acid with unique catalytic and reductive bifunctional properties, rather than acetic acid, the most common catalyst for COF synthesis. The reaction mechanism was demonstrated to be a synchronous in situ reduction during the formation of imine bond. The flexibilities of the products endow them with accommodative adaptability to guest molecules, thus increasing the adsorption capacities for nitrogen and iodine by 27 % and 22 %, respectively. Impressively, a novel concept of flexibilization degree was proposed firstly, which provides an effective approach to rationally measure the flexibility of COFs.

9.
ACS Omega ; 6(3): 2156-2166, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33521455

RESUMO

A DGA-arm-grafted macrocyclic aza-crown ether ligand (Cr6DGA) was synthesized, and its solvent extraction behavior toward trivalent americium and europium in nitric acid medium was studied. The effects of various parameters such as the contact time, temperature, concentration of the extractant, and acidity on the extraction by Cr6DGA were investigated. It was found that in 3 mol/L HNO3, the SFEu/Am value was about 2. The complexation energies calculated by DFT showed that the Eu(III) complexes were more stable than the corresponding Am(III) complexes in gas, aqueous, and organic phases. Furthermore, the coordination study showed that the metal/ligand ratio of the extracted species was 1:2 by mass spectrometry (MS) analysis. The time-resolved laser-induced fluorescence spectra (TRLFS) further proved that the extracted species contained one water molecule, and so the composition of the extracted complexes may be [EuL2NO3(H2O)]2+ or [EuL2(NO3)2(H2O)]+. Finally, DFT calculations revealed that [EuL2(NO3)2(H2O)]+ is a more stable species and the binding energy of Eu(III) with the DGA unit is lower than that with the crown unit.

10.
J Environ Radioact ; 218: 106254, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32421586

RESUMO

Citric acid (CA) and Lactic acid (LA) were used as additives to study the mechanism of organic acid promoting the root-to-shoot translocation of uranium (U) in Brassica juncea var. foliosa from molecular and tissue levels. Firstly, the distribution of U in plants under the condition of different organic acids concentrations were studied. The accumulation of U in leafs of 1 mM CA group and 5 mM LA group reached 2225 and 1848 mg/kg respectively, which was about 5 times that of the control group. Secondly, the speciation and distribution of U in plant roots after exposure to different culture solutions were studied by EXAFS and SEM. The result of EXAFS found that the complex of U with organic acids resulted in the U accumulated in the roots was the uranyl carboxylate speciation, while the control group only was the uranyl phosphate speciation. SEM results showed that the lactic acids could enhanced the translocation of U from the cortex to the stele. Thirdly, we further studied the apoplastic pathway and the symplastic pathway of U translocation using transpiration inhibitor and metabolism inhibitor. Compared with the control group, it was likely that the complex of U with organic acids were translocated into the shoot of plants through the apoplastic pathway.


Assuntos
Mostardeira , Monitoramento de Radiação , Urânio , Folhas de Planta , Raízes de Plantas
11.
Angew Chem Int Ed Engl ; 59(37): 16061-16068, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32452101

RESUMO

Elastic metal-organic materials (MOMs) capable of multiple stimuli-responsiveness based on dual-stress and thermally responsive triple-helix coordination polymers are presented. The strong metal-coordination linkage and the flexibility of organic linkers in these MOMs, rather than the 4 Šstacking interactions observed in organic crystals, causes the helical chain to act like a molecular spring and thus accounts for their macroscopic elasticity. The thermosalient effect of elastic MOMs is reported for the first time. Crystal structure analyses at different temperatures reveal that this thermoresponsiveness is achieved by adaptive regulation of the triple-helix chains by fine-tuning the opening angle of flexible V-shaped organic linkers and rotation of its lateral conjugated groups to resist possible expansion, thus demonstrating the vital role of adaptive reorganization of triple-helix metal-organic chains as a molecular spring-like motif in crystal jumping.

12.
Chem Commun (Camb) ; 56(6): 880-883, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31848535

RESUMO

A crystalline quantum dot of a COF was prepared for the first time by the original BRB method and a novel pathway for online monitoring of the COF reaction rate was proposed. The quantum dot can respond to uranyl ion quickly and sensitively and is of great potential in uranium detection.

13.
Inorg Chem ; 59(1): 943-955, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31815447

RESUMO

Template synthesis is one of the most feasible ways to explore new uranyl compounds with intriguing structures and properties. Here we demonstrate the preparation of six novel "sandwichlike" uranyl coordination polymers (UCPs) based on two-dimensional uranyl-terephthalate acid (H2TP) networks using CBn (n = 5, 6, 8) as template ligands in the presence of different cations (Na+, K+, Cs+, or H2N(CH3)2+). Compound 1 ([UO2(TP)2][Na2(CB5)(H2O)](H2O)5) is composed of layered uranyl-TP networks with the complex of CB5 and sodium cations as template ligands. In compound 2 ([(UO2)2(TP)3]2(CB6)(H2O)10), CB6 located between uranyl-TP networks contacts them by π-π interactions and hydrogen bonds. Compound 3 ([(UO2)2(TP)3]2[Na2(H2O)10(CB6)]) is the same as compound 2 except for sodium cations bonding with CB6. Similarly in compound 4 ([(UO2)2(TP)3][Cs(H2O)3(CB6)]), CB6 is a capsulelike structure capped with two cesium cations and interacts with uranyl-TP networks through π-π and C-H···π interactions. Compound 5 ([(UO2)2(TP)3(HCOO)2][K(H2O)2(CB5)]2[H2N(CH3)2]2(CB6)(H2O)6) consists of both templates of CB6 and CB5 in which each CB5 is capped with one potassium cation while the H2N(CH3)2+ cation is held at CB6 portals. In compound 6 ([(UO2)2(TP)3]2[UO2(TP)2(H2O)2][Cs(CB8)3(H2O)4](H2O)16), CB8 ligands are connected by cesium cations to form a triangle motif and are further located between the uranyl-TP networks as template agents. All of the 2D layered structures with free CBn or cation-anchored CBn intercalate into the laminates of uranyl-terephthalate and shows a cucurbituril-mediated structural evolution. The regulating role of CBn as structure-directing template agents for the construction of layered UCPs through outer-surface interactions with layers of uranyl terephthalate is demonstrated, especially for the case of CB6 with contractive interlayer spacing.

14.
Environ Pollut ; 253: 221-230, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31310872

RESUMO

There is a need to develop highly efficient materials for capturing uranium from nuclear wastewater. Here, 5-methylbenzotriazole modified graphene oxide (MBTA-GO) was used to adsorb U(VI) from aqueous solution. By the trials of different conditions, we found that the removal of U(VI) from acidic solution was strongly dependent on pH but independent of ionic strength. The U(VI) adsorption was perfectly conformed to the pseudo-second-order kinetics and the adsorption isotherms were simulated by the Langmuir model well. A high removal capacity (qmax = 264 mg/g) for U(VI) at pH 3.5 was obtained. XPS, EXAFS analyses and DFT calculations revealed that the mechanism of uranium capture was ascribed to (i) the surface complexation by benzotriazole and carboxyl groups (providing lone pair electrons) on MBTA-GO and (ii) enhanced synergistic coordination ability of delocalized π-bond of triazole group toward U due to the transfer of electrons from graphene sheet to benzotriazole. DFT calculations further demonstrated that benzotriazole displayed stronger binding with U(VI) compared to carboxyl group due to higher binding energy of [Side/Surface-U-MBTA-GO] (79.745, 54.986 kcal/mol) than [MBTA-GO-COOH-U] (27.131 kcal/mol). This work will provide valuable insight into designing novel nitrogen-containing adsorbents for practical application in wastewater treatment.


Assuntos
Grafite/química , Triazóis/química , Urânio/química , Poluentes Radioativos da Água/química , Adsorção , Cinética , Concentração Osmolar , Óxidos/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Água
15.
J Hazard Mater ; 375: 78-85, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31048138

RESUMO

This paper studied the fate of Re in the presence of polyaminocarboxy ligand (DTPA, EDTA and NTA) under reducing condition. When SnCl2 as reducing agent, the results indicated the low valent Re was formed. And batch experiments studied the effect of pH and different ligands on the formation of low valent Re complex, the acid condition was favoured for the formation of low valent Re complex, and the order of complexing toward the low valent Re was the following: DTPA > EDTA > NTA. In the condition of pH = 1, DTPA as ligand, the hourglass crystal was obtained. Using ESI-MS, solid-state UV-Vis-NIR spectra, EXAFS, DFT calculation et al, the darkened patch of the hourglass crystal was demonstrated to be Re, and its speciation was dimeric Re2(µ-O)2DTPA.

16.
Inorg Chem ; 58(10): 6934-6945, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31038934

RESUMO

Bipyridine organic bases are beneficial to the synthesis of novel uranyl-organic hybrid materials, but the relationship between their molecular structures and specific roles as structure-directing agents, especially for the semirigid dicarboxylate systems, is still unclear. Here we demonstrate how the bipyridine ligands direct the coordination assembly of uranyl-organic compounds with a semirigid dicarboxylate linker, 4,4'-dicarboxybiphenyl sulfone (H2dbsf), by utilizing a series of bipyridine ligands, 1,10-phenanthroline (phen), 2,2'-bipyridine (2,2'-bpy), 5,5'-dimethylbipyridine (5,5'-dmbpy), 4,4'-bipyridine (4,4'-bpy), or 1,3-di(4-pyridyl)propane (bpp). Under hydrothermal conditions, eight uranyl-organic coordination polymers (UCPs), four of which [[UO2(dbsf)(phen)] (1), [UO2(dbsf)(phen)]·H2O (1'), [U4O10(dbsf)3]2[H2bpp]2 (6), and [U4O10(dbsf)3]2[H2bpp] (6')] were reported previously, were synthesized and divided into two types based on the chelate or template effect of these bipyridine ligands. 1, 1', [UO2(dbsf)(2,2'-bpy)] (2), and [(UO2)2(dbsf)2(5,5'-dmbpy)2] (3) are springlike triple helices with bipyridine ligands (phen, 2,2'-bpy, or 5,5'-dmbpy) as chelate ligands, while [U4O10(dbsf)3][H2(4,4'-bpy)] (4), [U4O10(dbsf)3]2[H(4,4'-bpy)]2[Ni(H2O)6] (5), 6, and 6' are tetranuclear uranyl-mediated 2-fold-interpenetrating networks with 4,4'-bpy or bpp as template ligands and charge-balancing agents. The participation or not in uranyl coordination of different bipyridine ligands promotes not only diversity in uranyl speciation and final topological structures among different classes of organic bases but also consistency for the same types of bipyridine ligands, which thus endows the possibility of the rational design of UCPs based on semirigid dicarboxylate ligands with the aid of cautiously selected bipyridine ligands.

17.
Acta Crystallogr E Crystallogr Commun ; 75(Pt 3): 319-323, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30867940

RESUMO

The title compound, C25H25N9O9·C16H36N+·H2PO4 - (I) or (C25H25N9O9)·(n-Bu4N+)·(H2PO4 -) (systematic name: 3-(4-nitro-phen-yl)-1,1-bis-{2-[3-(4-nitro-phen-yl)ureido]eth-yl}urea tetra-butyl-ammonium di-hydrogen phosphate), comprises a tris-urea receptor (R), a di-hydrogen phosphate anion and a tetra-n-butyl-ammonium cation. It crystallizes with two independent formula units in the asymmetric unit. The conformations of the two tris-urea receptors are stabilized by N-H⋯O and C-H⋯O intra-molecular hydrogen bonds. Each di-hydrogen phosphate anion has two O-H⋯O inter-molecular hydrogen-bonding inter-actions with the other di-hydrogen phosphate anion. Inversion-related di-anion units are linked by further O-H⋯O hydrogen bonds, forming a chain propagating along the a-axis direction. Each di-hydrogen phosphate anion makes a total of four N-H⋯O(H2PO4 -) hydrogen bonds with two ureido subunits from two different tris-urea receptors, hence each tris-urea receptor provides the two ureido subunits for the encapsulation of the H2PO4 - hydrogen-bonded chain. There are numerous inter-molecular C-H⋯O hydrogen bonds present involving both receptor mol-ecules and the tetra-n-butyl-ammonium cations, so forming a supra-molecular three-dimensional structure. One of the butyl groups and one of the nitro groups are disordered over two positions of equal occupancy.

18.
Acta Crystallogr C Struct Chem ; 74(Pt 3): 366-371, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29504567

RESUMO

The interaction between the uranyl cation, (UO2)2+, and organic species is of interest due to the potential applications of the resulting compounds with regard to nuclear waste disposal and nuclear fuel reprocessing. The hydrothermal reaction of various uranyl compounds with flexible zwitterionic 1,1'-[1,4-phenylenebis(methylene)]bis(pyridin-1-ium-4-carboxylate) dihydrochloride (Bpmb·2HCl) in deionized water containing drops of H2SO4 resulted in the formation of a novel two-dimensional uranyl coordination polymer, namely poly[tetraoxido{µ2-1,1'-[1,4-phenylenebis(methylene)]bis(pyridin-1-ium-4-carboxylate)}di-µ3-sulfato-diuranium(VI)], [(UO2)2(SO4)2(C20H16N2O4)]n, (1). Single-crystal X-ray diffraction reveals that this coordination polymer exhibits a layered arrangement and the (UO2)2+ centre is coordinated by five equatorial O atoms. The structure was further characterized by FT-IR spectroscopy, powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA). The polymer shows high thermal stability up to 696 K. Furthermore, the photoluminescence properties of (1) has also been studied, showing it to exhibit a typical uranyl fluorescence.

19.
Acta Crystallogr E Crystallogr Commun ; 73(Pt 9): 1316-1319, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28932464

RESUMO

The title compounds, tetra-butyl-ammonium chloride-1,1'-(1,2-phenyl-ene)bis-(3-m-tolyl-urea) (1/1), C16H36N+·Cl-·C22H22N4O2 or [(n-Bu4N+·Cl-)(C22H22N4O2)] (I) and tetra-butyl-ammonium bromide-1,1'-(1,2-phenyl-ene)bis-(3-m-tolyl-urea) (1/1), C16H36N+·Br-·C22H22N4O2 or [(n-Bu4N+·Br-)(C22H22N4O2)] (II), both comprise a tetra-butyl-ammonium cation, a halide anion and an ortho-phenyl-ene bis-urea mol-ecule. Each halide ion shows four N-H⋯X (X = Cl or Br) inter-actions with two urea receptor sites of different bis-urea moieties. A crystallographic inversion centre leads to the formation of a 2:2 arrangement of two halide anions and two bis-urea mol-ecules. In the crystals, the dihedral angle between the two urea groups of the bis-urea mol-ecule in (I) [defined by the four N atoms, 165.4 (2)°] is slightly smaller than that in (II) [167.4 (2)°], which is probably due to the smaller ionic radius of chloride compared to bromide.

20.
J Colloid Interface Sci ; 508: 303-312, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28843921

RESUMO

A novel approach for facile covalent functionalization of graphene oxide (GO) was proposed in the present study in order to effectively avoid necessary anhydrous conditions and the usage of harsh reagents during the chemical functionalization of GO. Herein, a GO derivative that was functionalized with a primary amine derivative bearing a positively charged quaternary ammonium group, GO-S, was synthesized through a Schiff base condensation reaction between the amine groups of the primary amine derivative and the aldehyde groups of GO. The introduction of the quaternary ammonium groups can prevent GO from stacking and improve the dispersibility of GO after modification. The formation of imine bonds (NCH) between the primary amine and GO has been confirmed by Fourier transform infrared and X-ray photoelectron spectroscopy. The GO-S demonstrated good dispersion stability in aqueous medium and also exhibited better adsorption performance than GO for Th(IV) and U(VI), with a maximum thorium adsorption capacity of 2.22mmol/g and a maximum uranium adsorption capacity of 0.83mmol/g, suggesting a great potential for the application of graphene oxide-based materials for facilitating the removal of Th(IV) and U(VI) from nuclear waste solutions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA