Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38728009

RESUMO

The RNA/DNA-binding protein TDP-43 plays a pivotal role in the ubiquitinated inclusions characteristic of TDP-43 proteinopathies, including most cases of frontotemporal lobar degeneration (FTLD-TDP) and Alzheimer disease (AD). To understand the mechanisms of pathological TDP-43 processing and identify potential biomarkers, we generated novel phosphorylation-independent monoclonal antibodies (MAbs) using bacteria-expressed human full-length recombinant TDP-43. Remarkably, we identified a distinctive MAb, No. 9, targeting an epitope in amino acid (aa) region 311-360 of the C-terminus. This antibody showed preferential reactivity for pathological TDP-43 inclusions, with only mild reactivity for normal nuclear TDP-43. MAb No. 9 revealed more pathology in FTLD-TDP type A and type B brains and in AD brains compared to the commercial p409/410 MAb. Using synthetic phosphorylated peptides, we also obtained MAbs targeting the p409/410 epitope. Interestingly, MAb No. 14 was found to reveal additional pathology in AD compared to the commercial p409/410 MAb, specifically, TDP-43-immunopositive deposits with amyloid plaques in AD brains. These unique immunopositivities observed with MAbs No. 9 and No. 14 are likely attributed to their conformation-dependent binding to TDP-43 inclusions. We expect that this novel set of MAbs will prove valuable as tools for future patient-oriented investigations into TDP-43 proteinopathies.

2.
BMC Med Educ ; 24(1): 545, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750537

RESUMO

PURPOSE: The purpose of this study was to compare the learning in the implant dentistry hands-on course to that of the flipped classroom (FC) and the traditional lecture cohorts (control). MATERIALS AND METHODS: In this study,80 students were enrolled for the first time in an implant dentistry program. Subsequently, they were divided into two groups. The first, the FC group, which had free access to a video with a PowerPoint presentation on the Chaoxing-WHU-MOOC platform about the implant placement on first molar sites before class. The second, the control group, which attended a didactic lecture describing implant practice on the first molar site via a bidirectional multimedia interactive teaching demonstration and then operated on a simulation model. Cone beam computed tomography (CBCT) and the deviation gauge were utilized to analyze the accuracy of the implant placement in the students' models. An online satisfaction questionnaire was distributed to both groups one week after the class. RESULTS: The linear deviation of the CBCT examination did not show any statistical difference between the two groups concerning cervical, apex, and angular. A significant buccal deviation was observed in the control group compared with the FC group (mean: 0.7436 mm vs. 0.2875 mm, p = 0.0035), according to the restoration-level deviation gauge. A total of 74.36% of students in the FC group placed implant within 0.5 mm buccal-to-lingual deviations, but only 41.03% of students in the control group reached within 0.5 mm buccal-to-lingual deviation ranges. Additionally, 91.67% of the students in the FC group and 97.5% of the students in the control group were satisfied with the practical implant class. CONCLUSION: FC was more effective than a didactic lecture for implant dentistry practical skill acquisition.


Assuntos
Implantação Dentária , Educação em Odontologia , Humanos , Educação em Odontologia/métodos , Implantação Dentária/educação , Currículo , Tomografia Computadorizada de Feixe Cônico , Feminino , Masculino , Avaliação Educacional , Aprendizagem Baseada em Problemas , Estudantes de Odontologia , Competência Clínica
3.
Inflammation ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630168

RESUMO

Periodontal disease is the pathological outcome of the overwhelming inflammation in periodontal tissue. Cellular senescence has been associated with chronic inflammation in several diseases. However, the role of cellular senescence in the pathogenesis of periodontal disease remained unclear. This study aimed to investigate the role and the mechanism of cellular senescence in periodontal disease. Using single-cell RNA sequencing, we first found the upregulated level of cellular senescence in fibroblasts and endothelial cells from inflamed gingival tissue. Subsequently, human gingival fibroblasts isolated from healthy and inflamed gingival tissues were labeled as H-GFs and I-GFs, respectively. Compared to H-GFs, I-GFs exhibited a distinct cellular senescence phenotype, including an increased proportion of senescence-associated ß-galactosidase (SA-ß-gal) positive cells, enlarged cell morphology, and significant upregulation of p16INK4A expression. We further observed increased cellular reactive oxygen species (ROS) activity, mitochondrial ROS, and DNA damage of I-GFs. These phenotypes could be reversed by ROS scavenger NAC, which suggested the cause of cellular senescence in I-GFs. The migration and proliferation assay showed the decreased activity of I-GFs while the gene expression of senescence-associated secretory phenotype (SASP) factors such as IL-1ß, IL-6, TGF-ß, and IL-8 was all significantly increased. Finally, we found that supernatants of I-GF culture induced more neutrophil extracellular trap (NET) formation and drove macrophage polarization toward the CD86-positive M1 pro-inflammatory phenotype. Altogether, our findings implicate that, in the inflamed gingiva, human gingival fibroblasts acquire a senescent phenotype due to oxidative stress-induced DNA and mitochondrial damage, which in turn activate neutrophils and macrophages through the secretion of SASP factors.

4.
J Fungi (Basel) ; 10(4)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38667971

RESUMO

Species of the genus Thelephora (Thelephorales, Thelephoraceae) are ectomycorrhizal symbionts of coniferous and broad-leaved plants, and some of them are well-known edible mushrooms, making it an exceptionally important group ecologically and economically. However, the diversity of the species from China has not been fully elucidated. In this study, we conducted a phylogenetic analysis based on the internal transcribed spacer (ITS) regions, using Maximum Likelihood and Bayesian analyses, along with morphological observations of this genus. Four new species from China are proposed, viz., T. dactyliophora, T. lacunosa, T. petaloides, and T. pinnatifida. In addition, T. sikkimensis originally described from India is reported for the first time from China. Thelephora dactyliophora, T. pinnatifida, and T. sikkimensis are distributed in subtropical forests and mainly associated with plants of the families Fagaceae and Pinaceae. Thelephora lacunosa and T. petaloides are distributed in tropical to subtropical forests. Thelephora lacunosa is mainly associated with plants of the families Fagaceae and Pinaceae, while T. petaloides is mainly associated with plants of the family Fagaceae. Line drawings of microstructures, color pictures of fresh basidiomes, and detailed descriptions of these five species are provided.

5.
Tissue Cell ; 88: 102358, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38537379

RESUMO

OBJECTIVE: With the growing interest in the role of fibroblasts in osteogenesis, this study presents a comparative evaluation of the osteogenic potential of fibroblasts derived from three distinct sources: human gingival fibroblasts (HGFs), mouse embryonic fibroblasts (NIH3T3 cells), and mouse subcutaneous fibroblasts (L929 cells). MC3T3-E1 pre-osteoblast cells were employed as a positive control for osteogenic behavior. DESIGN: Our assessment involved multiple approaches, including vimentin staining for cell origin verification, as well as ALP and ARS staining in conjunction with RT-PCR for osteogenic characterization. RESULTS: Our findings revealed the superior osteogenic differentiation capacity of HGFs compared to MC3T3-E1 and NIH3T3 cells. Analysis of ALP staining confirmed that early osteogenic differentiation was most prominent in MC3T3-E1 cells at 7 days, followed by NIH3T3 and HGFs. However, ARS staining at 21 days demonstrated that HGFs produced the highest number of calcified nodules, indicating their robust potential for late-stage mineralization. This late-stage osteogenic potential of HGFs was further validated through RT-PCR analysis. In contrast, L929 cells displayed no significant osteogenic differentiation potential. CONCLUSIONS: In light of these findings, HGFs emerge as the preferred choice for seed cells in bone tissue engineering applications. This study provides valuable insights into the potential utility of HGFs in the fields of bone tissue engineering and regenerative medicine.

6.
J Periodontol ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488753

RESUMO

BACKGROUND: To explore the role of leukemia inhibitory factor (LIF) in periodontitis via in vivo and in vitro experiments. METHODS: The second upper molar of LIF knockout mice and their wild-type littermates were ligated for 8 days. Micro-computed tomography (micro-CT), histological analysis, and quantitative real-time polymerase chain reaction (qRT-PCR) were performed. The expression levels of proinflammatory cytokines were examined in mouse bone marrow derived macrophages and human periodontal ligament fibroblasts (HPDLFs) after lipopolysaccharide (LPS) treatment. RESULTS: LIF deficiency promoted alveolar bone loss, inflammatory cells infiltration, osteoclasts formation and collagen fiber degradation in ligature-induced mouse, along with higher expressions of proinflammatory cytokines, including interleukin-6 (IL6), IL-1ß (IL1B), tumor necrosis factor-α (TNFA), matrix metalloproteinase 13 (MMP13), and RANKL/OPG ratio. Additionally, LIF deletion led to higher expression levels of these proinflammatory cytokines in mouse bone marrow-derived macrophages from both femur and alveolar bone and HPDLFs when treated with LPS. Administration of recombined LIF attenuated TNFA, IL1B, and RANKL/OPG ratio in HPDLFs. CONCLUSIONS: These findings indicate that LIF deficiency promotes the progress of periodontitis via modulating immuno-inflammatory responses of macrophages and periodontal ligament fibroblasts, and the application of LIF may be an adjunctive treatment for periodontitis to resolute inflammation.

7.
J Inflamm Res ; 17: 1621-1642, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495343

RESUMO

Background: Peri-implantitis (PI) is a prevalent complication of implant treatment. Pyroptosis, a distinctive inflammatory programmed cell death, is crucial to the pathophysiology of PI. Despite its importance, the pyroptosis-related genes (PRGs) influencing PI's progression remain largely unexplored. Methods: This study conducted histological staining and transcriptome analyze from three datasets. The intersection of differentially expressed genes (DEGs) and PRGs was identified as pyroptosis-related differentially expressed genes (PRDEGs). Functional enrichment analyses were conducted to shed light on potential underlying mechanisms. Weighted Gene Co-expression Network Analysis (WGCNA) and a pyroptotic macrophage model were utilized to identify and validate hub PRDEGs. Immune cell infiltration in PI and its relationship with hub PRDEGs were also examined. Furthermore, consensus clustering was performed to identify new PI subtypes. Protein-protein interaction (PPI) network, competing endogenous RNA (ceRNA) network, mRNA-mRNA binding protein regulatory (RBP) network, and mRNA-drugs regulatory network of hub PRDEGs were also analyzed. Results: Eight hub PRDEGs were identified: PGF, DPEP1, IL36B, IFIH1, TCEA3, RIPK3, NET7, and TLR3, which are instrumental in the PI's progression. Two PI subtypes were distinguished, with Cluster 1 exhibiting higher immune cell activation. The exploration of regulatory networks provided novel mechanisms and therapeutic targets in PI. Conclusion: Our research highlights the critical role of pyroptosis and identifies eight hub PRDEGs in PI's progression, offering insights into novel immunotherapy targets and laying the foundation for advanced diagnostic and treatment strategies. This contributes to our understanding of PI and underscores the potential for personalized clinical management.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38498788

RESUMO

OBJECTIVE: This systematic review aimed to compare the influence of immediate and non-immediate loading protocols on overdentures retained by reduced-diameter implants(≦3.5mm). METHODS: Electronic databases, including MEDLINE (via PubMed), Embase and the Cochrane Central Register of Controlled Trials were searched for randomized controlled trials (RCTs) comparing clinical outcomes of immediately and nonimmediately loaded reduced-diameter implants supported overdentures. The risk of bias within and across the studies and the certainty of evidence were assessed by RoB 2.0 and GRADE, respectively. Sensitivity analysis was performed by eliminating studies at high risk of bias, and repeating the data synthesis employing the randomeffect model. Subgroup analyses were conducted based on the implant diameter and the length of follow-up. RESULTS: Six RCTs with 255 patients were included in this systematic review. The meta-analyses found similar implant survival rates between immediate and nonimmediate loaded implants in mini implant (RR=0.98; 95% CI=0.95, 1.01; p=0.12) and narrow implant subgroups (RR=0.99, 95% CI=0.94, 1.03, p =0.56), as well as in short-term (RR=0.98, 95% CI=0.97, 1.00, p =0.11) and long-term (RR=0.97, 95% CI=0.93, 1.01, p =0.09) follow-up subgroups. Additionally, marginal bone loss (MBL) showed no statistically significant difference between the loading protocols in the subgroup of long-term follow-up (MD=0.03; 95%CI=-0.16, 0.23; p=0.74). Three RCTs investigating peri-implant parameters found relatively higher modified plaque index and probing depth in reduced-diameter implant under immediate loading. CONCLUSION: Compared with non-immediate loading, the immediately loading protocol can achieve comparable survival rates and MBL in reduced-diameter implant retained overdentures.

9.
Int J Biol Macromol ; 262(Pt 1): 129927, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311130

RESUMO

To promote bone repair, it is desirable to develop three-dimensional multifunctional fiber scaffolds. The densely stacked and tightly arranged conventional two-dimensional electrospun fibers hinder cell penetration into the scaffold. Most of the existing three-dimensional structural materials are isotropic and monofunctional. In this research, a Janus nanofibrous scaffold based on silk fibroin/polycaprolactone (SF/PCL) was fabricated. SF-encapsulated SeNPs demonstrated stability and resistance to aggregation. The outside layer (SF/PCL/Se) of the Janus nanofiber scaffold displayed a structured arrangement of fibers, facilitating cell growth guidance and impeding cell invasion. The inside layer (SF/PCL/HA) featured a porous structure fostering cell adhesion. The Janus fiber scaffold containing SeNPs notably suppressed S. aureus and E. coli activities, correlating with SeNPs concentration. In vitro, findings indicated considerable enhancement in alkaline phosphatase (ALP) activity of MC3T3-E1 osteoblasts and upregulation of genes linked to osteogenic differentiation with exposure to the SF/PCL/HA/Se Janus nanofibrous scaffold. Moreover, in vivo, experiments demonstrated successful critical bone defect repair in mouse skulls using the SF/PCL/HA/Se Janus nanofiber scaffold. These findings highlight the potential of the SF/PCL-based Janus nanofibrous scaffold, integrating SeNPs and nHA, as a promising biomaterial in bone tissue engineering.


Assuntos
Fibroínas , Nanofibras , Camundongos , Animais , Fibroínas/farmacologia , Fibroínas/química , Alicerces Teciduais/química , Osteogênese , Porosidade , Escherichia coli , Staphylococcus aureus , Engenharia Tecidual/métodos , Poliésteres/química , Regeneração Óssea , Nanofibras/química , Seda/química
10.
Int J Oral Maxillofac Implants ; 39(1): 65-78, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38416001

RESUMO

PURPOSE: To review experimental peri-implantitis studies using rat models and summarize different peri-implantitis induction techniques and evaluate their effectiveness. MATERIALS AND METHODS: Electronic searches were conducted by two independent examiners to address the following issues. Meta-analyses explored the marginal bone loss (MBL) of four types of peri-implantitis induction methods in rats. The detailed induction tactics-such as the implant design, implant size, surgical process, time cost, induction methods, and endpoint measurements-were summarized. RESULTS: Of the 18 included studies, 38.9% of the studies placed implants at the maxillary first molar, and 44.4% placed them at the alveolar ridge region anterior to the maxillary first molar. As for the induction method, the numbers of published studies on ligature methods, bacterial inoculation, and bacterial lipopolysaccharide inoculation were equally high among all selected studies. The total implant survival rate at the end was 160 out of 213 implants (75.11%). Eight studies with high pooled heterogeneity (I2 = 98, P < .01) in the meta-analysis reported an overall MBL (µ-CT) of 0.47 mm (95% CI = 0.14 to 0.81). A subgroup analysis estimated an MBL of 0.31 mm (95% CI = 0.12 to 0.50) for bacterial inoculation and 0.66 mm (95% CI = 0.07 to 1.26) for the ligature method. Histopathologic analysis revealed that peri-implantitis in rats was similar to peri-implantitis lesions in humans. CONCLUSIONS: Implant placement at the maxillary first molar with bacterial inoculation and the silk ligature method to build peri-implantitis rat models is reliable to use for research on peri-implantitis.


Assuntos
Doenças Ósseas Metabólicas , Peri-Implantite , Humanos , Animais , Ratos , Peri-Implantite/etiologia , Processo Alveolar , Dente Molar/cirurgia
11.
Bone ; 181: 117036, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311303

RESUMO

Osteoclasts, the exclusive bone resorptive cells, are indispensable for bone remodeling. Hence, understanding novel signaling modulators regulating osteoclastogenesis is clinically important. Nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) is a master transcription factor in osteoclastogenesis, and binding of NF-κB p65 subunit to NFATc1 promoter is required for its expression. It is well-established that DNA binding activity of p65 can be regulated by various post-translational modifications, including S-nitrosation. Recent studies have demonstrated that S-nitrosoglutathione reductase (GSNOR)-mediated protein denitrosation participated in cell fate commitment by regulating gene transcription. However, the role of GSNOR in osteoclastogenesis remains unexplored and enigmatic. Here, we investigated the effect of GSNOR-mediated denitrosation of p65 on osteoclastogenesis. Our results revealed that GSNOR was up-regulated during osteoclastogenesis in vitro. Moreover, GSNOR inhibition with a chemical inhibitor impaired osteoclast differentiation, podosome belt formation, and bone resorption activity. Furthermore, GSNOR inhibition enhanced the S-nitrosation level of p65, precluded the binding of p65 to NFATc1 promoter, and suppressed NFATc1 expression. In addition, mouse model of lipopolysaccharides (LPS)-induced calvarial osteolysis was employed to evaluate the therapeutic effect of GSNOR inhibitor in vivo. Our results indicated that GSNOR inhibitor treatment alleviated the inflammatory bone loss by impairing osteoclast formation in mice. Taken together, these data have shown that GSNOR activity is required for osteoclastogenesis by facilitating binding of p65 to NFATc1 promoter via promoting p65 denitrosation, suggesting that GSNOR may be a potential therapeutic target in the treatment of osteolytic diseases.


Assuntos
Aldeído Oxirredutases , Reabsorção Óssea , Osteólise , Animais , Camundongos , Osteogênese/genética , Oxirredutases/metabolismo , Oxirredutases/farmacologia , Oxirredutases/uso terapêutico , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/metabolismo , Reabsorção Óssea/metabolismo , NF-kappa B/metabolismo , Diferenciação Celular , Osteólise/metabolismo , Ligante RANK/metabolismo
12.
Cell Mol Life Sci ; 81(1): 107, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421448

RESUMO

Macrophage polarization is closely related to inflammation development, yet how macrophages are polarized remains unclear. In our study, the number of M1 macrophages was markedly increased in Fam76b knockout U937 cells vs. wild-type U937 cells, and FAM76B expression was decreased in M1 macrophages induced from different sources of macrophages. Moreover, Fam76b knockout enhanced the mRNA and protein levels of M1 macrophage-associated marker genes. These results suggest that FAM76B inhibits M1 macrophage polarization. We then further explored the mechanism by which FAM76B regulates macrophage polarization. We found that FAM76B can regulate PI3K/Akt/NF-κB pathway-mediated M1 macrophage polarization by stabilizing PIK3CD mRNA. Finally, FAM76B was proven to protect against inflammatory bowel disease (IBD) by inhibiting M1 macrophage polarization through the PI3K/Akt/NF-κB pathway in vivo. In summary, FAM76B regulates M1 macrophage polarization through the PI3K/Akt/NF-κB pathway in vitro and in vivo, which may inform the development of future therapeutic strategies for IBD and other inflammatory diseases.


Assuntos
Doenças Inflamatórias Intestinais , NF-kappa B , Humanos , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Macrófagos , RNA Mensageiro/genética , Classe I de Fosfatidilinositol 3-Quinases/genética
13.
Acta Biomater ; 176: 432-444, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38185232

RESUMO

The use of bone substitute materials is crucial for the healing of large bone defects. Immune response induced by bone substitute materials is essential in bone regeneration. Prior research has mainly concentrated on innate immune cells, such as macrophages. Existing research suggests that T lymphocytes, as adaptive immune cells, play an indispensable role in bone regeneration. However, the mechanisms governing T cell recruitment and specific subsets that are essential for bone regeneration remain unclear. This study demonstrates that CD4+ T cells are indispensable for ectopic osteogenesis by biphasic calcium phosphate (BCP). Subsequently, the recruitment of CD4+ T cells is closely associated with the activation of calcium channels in macrophages by BCP to release chemokines Ccl3 and Ccl17. Finally, these recruited CD4+ T cells are predominantly Tregs, which play a significant role in ectopic osteogenesis by BCP. These findings not only shed light on the immune-regenerative process after bone substitute material implantation but also establish a theoretical basis for developing bone substitute materials for promoting bone tissue regeneration. STATEMENT OF SIGNIFICANCE: Bone substitute material implantation is essential in the healing of large bone defects. Existing research suggests that T lymphocytes are instrumental in bone regeneration. However, the specific mechanisms governing T cell recruitment and specific subsets that are essential for bone regeneration remain unclear. In this study, we demonstrate that activation of calcium channels in macrophages by biphasic calcium phosphate (BCP) causes them to release the chemokines Ccl3 and Ccl17 to recruit CD4+ T cells, predominantly Tregs, which play a crucial role in ectopic osteogenesis by BCP. Our findings provide a theoretical foundation for developing bone substitute material for bone tissue regeneration.


Assuntos
Substitutos Ósseos , Substitutos Ósseos/farmacologia , Regeneração Óssea , Hidroxiapatitas/farmacologia , Canais de Cálcio , Quimiocinas , Osteogênese , Fosfatos de Cálcio/farmacologia
14.
Adv Healthc Mater ; 13(7): e2302725, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38030141

RESUMO

In the context of bone regeneration, nanoparticles harboring osteogenic factors have emerged as pivotal agents for modulating the differentiation fate of stem cells. However, persistent challenges surrounding biocompatibility, loading efficiency, and precise targeting ability warrant innovative solution. In this study, a novel nanoparticle platform founded upon the zeolitic imidazolate framework-8 (ZIF-8) is introduced. This new design, CDC20@ZIF-8@eM-Apt, involves the envelopment of ZIF-8 within an erythrocyte membrane (eM) cloak, and is coupled with a targeting aptamer. ZIF-8, distinguished by its porosity, biocompatibility, and robust cargo transport capabilities, constitutes the core framework. Cell division cycle protein 20 homolog (CDC20) is illuminated as a new target in bone regeneration. The eM plays a dual role in maintaining nanoparticle stability and facilitating fusion with target cell membranes, while the aptamer orchestrates the specific recruitment of bone marrow mesenchymal stem cells (BMSCs) within bone defect sites. Significantly, CDC20@ZIF-8@eM-Apt amplifies osteogenic differentiation of BMSCs via the inhibition of NF-κB p65, and concurrently catalyzes bone regeneration in two bone defect models. Consequently, CDC20@ZIF-8@eM-Apt introduces a pioneering strategy for tackling bone defects and associated maladies, opening novel avenues in therapeutic intervention.


Assuntos
Nanopartículas , Zeolitas , Osteogênese , Membrana Eritrocítica , Regeneração Óssea/fisiologia
15.
J Cell Mol Med ; 27(23): 3805-3815, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37786319

RESUMO

Gingival mesenchymal stem cells (GMSCs) are newly developed seed cells for tissue engineering owing to their easy isolation, abundance and high growth rates. Thy-1 is an important regulatory molecule in the differentiation of mesenchymal stem cells (MSCs). In this study, we investigated the function of Thy-1 in the osteogenic differentiation of GMSCs by reducing the expression of Thy-1 using a lentivirus. The results demonstrated that Thy-1 knockdown promoted the osteogenic differentiation of GMSCs in vitro. Validation by RNA-seq revealed an obvious decrease in Vcam1 and Sox9 gene expression with Thy-1 knockdown. Kyoto Encyclopedia of Genes and Genomes pathway analysis suggested that the differentially expressed genes were enriched in the Wnt signalling pathway. We further demonstrated that Thy-1 knockdown promoted osteogenic differentiation of GMSCs by activating the Wnt/ß-catenin signalling pathway. Therefore, Thy-1 has a key regulatory role in the differentiation of GMSCs and maybe a core molecule connecting transcription factors related to the differentiation of MSCs. Our study also highlighted the potential of Thy-1 to modify MSCs, which may help improve their use in tissue engineering.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Antígenos Thy-1 , beta Catenina/genética , beta Catenina/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Via de Sinalização Wnt/genética , Antígenos Thy-1/genética , Antígenos Thy-1/metabolismo
16.
Fish Shellfish Immunol ; 142: 109161, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37838209

RESUMO

FAM76B is nuclear speckle-localized protein with a molecular weight of 39 kDa. The amino sequence of FAM76B protein is highly conserved among species, suggesting that FAM76B has important biological functions. However, the biological function of FAM76B is currently still unclear. To explore the biological function of FAM76B, we firstly used zebrafish as the experimental model to study the distribution and expression level of Fam76b. The results indicated that fam76b is highly expressed in hematopoiesis and immune systems of zebrafish by real-time quantitative PCR, in situ hybridization and Tg(fam76b: eGFP) transgenic zebrafish. Then, the fam76b gene was knocked out by CRISPR/Cas9 in zebrafish and fam76b rescue in fam76b-/- zebrafish was performed using the TOL2 transposable system. fam76b gene knockout zebrafish exhibit reduced thymus, excessive inflammatory response, and increased mortality. FAM76B was further found to be involved in regulating the development of hematopoiesis and immune system, and participate in the process of inflammatory response. Our findings in the study lay the groundwork for elucidating the function of the new molecule Fam76b and provide new insights into the development of zebrafish hematopoietic and immune system.


Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais Geneticamente Modificados , Hematopoese/genética
17.
Int J Oral Sci ; 15(1): 31, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532700

RESUMO

Bone substitute material implantation has become an important treatment strategy for the repair of oral and maxillofacial bone defects. Recent studies have shown that appropriate inflammatory and immune cells are essential factors in the process of osteoinduction of bone substitute materials. Previous studies have mainly focused on innate immune cells such as macrophages. In our previous work, we found that T lymphocytes, as adaptive immune cells, are also essential in the osteoinduction procedure. As the most important antigen-presenting cell, whether dendritic cells (DCs) can recognize non-antigen biomaterials and participate in osteoinduction was still unclear. In this study, we found that surgical trauma associated with materials implantation induces necrocytosis, and this causes the release of high mobility group protein-1 (HMGB1), which is adsorbed on the surface of bone substitute materials. Subsequently, HMGB1-adsorbed materials were recognized by the TLR4-MYD88-NFκB signal axis of dendritic cells, and the inflammatory response was activated. Finally, activated DCs release regeneration-related chemokines, recruit mesenchymal stem cells, and initiate the osteoinduction process. This study sheds light on the immune-regeneration process after bone substitute materials implantation, points out a potential direction for the development of bone substitute materials, and provides guidance for the development of clinical surgical methods.


Assuntos
Substitutos Ósseos , Proteína HMGB1 , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/metabolismo , Proteína HMGB1/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Substitutos Ósseos/metabolismo , Células Dendríticas/metabolismo
18.
Elife ; 122023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37643469

RESUMO

FAM76B has been reported to be a nuclear speckle-localized protein with unknown function. In this study, FAM76B was first demonstrated to inhibit the NF-κB-mediated inflammatory pathway by affecting the translocation of hnRNPA2B1 in vitro. We further showed that FAM76B suppressed inflammation in vivo using a traumatic brain injury (TBI) mouse model. Lastly, FAM76B was shown to interact with hnRNPA2B1 in human tissues taken from patients with acute, organizing, and chronic TBI, and with different neurodegenerative diseases. The results suggested that FAM76B mediated neuroinflammation via influencing the translocation of hnRNPA2B1 in vivo during TBI repair and neurodegenerative diseases. In summary, we for the first time demonstrated the role of FAM76B in regulating inflammation and further showed that FAM76B could regulate the NF-κB-mediated inflammatory pathway by affecting hnRNPA2B1 translocation, which provides new information for studying the mechanism of inflammation regulation.


Assuntos
Inflamação , NF-kappa B , Animais , Humanos , Camundongos , Lesões Encefálicas Traumáticas , Modelos Animais de Doenças , Inflamação/metabolismo , Translocação Genética
19.
Signal Transduct Target Ther ; 8(1): 267, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37433768

RESUMO

Studies in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and Amyotrophic lateral sclerosis, Huntington's disease, and so on, have suggested that inflammation is not only a result of neurodegeneration but also a crucial player in this process. Protein aggregates which are very common pathological phenomenon in neurodegeneration can induce neuroinflammation which further aggravates protein aggregation and neurodegeneration. Actually, inflammation even happens earlier than protein aggregation. Neuroinflammation induced by genetic variations in CNS cells or by peripheral immune cells may induce protein deposition in some susceptible population. Numerous signaling pathways and a range of CNS cells have been suggested to be involved in the pathogenesis of neurodegeneration, although they are still far from being completely understood. Due to the limited success of traditional treatment methods, blocking or enhancing inflammatory signaling pathways involved in neurodegeneration are considered to be promising strategies for the therapy of neurodegenerative diseases, and many of them have got exciting results in animal models or clinical trials. Some of them, although very few, have been approved by FDA for clinical usage. Here we comprehensively review the factors affecting neuroinflammation and the major inflammatory signaling pathways involved in the pathogenicity of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis. We also summarize the current strategies, both in animal models and in the clinic, for the treatment of neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Doença de Parkinson , Animais , Doenças Neuroinflamatórias , Doença de Alzheimer/genética , Doença de Parkinson/genética , Esclerose Lateral Amiotrófica/genética , Agregados Proteicos , Inflamação/genética
20.
Front Pharmacol ; 14: 1044576, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37144216

RESUMO

Disruption of colonic homeostasis caused by aberrant M1/M2 macrophage polarization contributes to the development of inflammatory bowel disease (IBD). Lycium barbarum polysaccharide (LBP) is the primary active constituent of traditional Chinese herbal Lycium barbarum L., which has been widely demonstrated to have important functions in regulating immune activity and anti-inflammatory. Thus, LBP may protect against IBD. To test this hypothesis, the DSS-induced colitis model was established in mice, then the mice were treated with LBP. The results indicated that LBP attenuated the weight loss, colon shortening, disease activity index (DAI), and histopathological scores of colon tissues in colitis mice, suggesting that LBP could protect against IBD. Besides, LBP decreased the number of M1 macrophages and the protein level of Nitric oxide synthase 2(NOS2) as a marker of M1 macrophages and enhanced the number of M2 macrophages and the protein level of Arginase 1(Arg-1) as a marker of M2 macrophages in colon tissues from mice with colitis, suggesting that LBP may protect against IBD by regulating macrophage polarization. Next, the mechanistic studies in RAW264.7 cells showed that LBP inhibited M1-like phenotype by inhibiting the phosphorylation of STAT1, and promoted M2-like phenotype by promoting the phosphorylation of STAT6. Finally, immunofluorescence double-staining results of colon tissues showed that LBP regulated STAT1 and STAT6 pathways in vivo. The results in the study demonstrated that LBP could protect against IBD by regulating macrophage polarization through the STAT1 and STAT6 pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA