Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 13(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38392319

RESUMO

Ammonium (NH4+) toxicity is ubiquitous in plants. To investigate the underlying mechanisms of this toxicity and bicarbonate (HCO3-)-dependent alleviation, wheat plants were hydroponically cultivated in half-strength Hoagland nutrient solution containing 7.5 mM NO3- (CK), 7.5 mM NH4+ (SA), or 7.5 mM NH4+ + 3 mM HCO3- (AC). Transcriptomic analysis revealed that compared to CK, SA treatment at 48 h significantly upregulated the expression of genes encoding fermentation enzymes (pyruvate decarboxylase (PDC), alcohol dehydrogenase (ADH), and lactate dehydrogenase (LDH)) and oxygen consumption enzymes (respiratory burst oxidase homologs, dioxygenases, and alternative oxidases), downregulated the expression of genes encoding oxygen transporters (PIP-type aquaporins, non-symbiotic hemoglobins), and those involved in energy metabolism, including tricarboxylic acid (TCA) cycle enzymes and ATP synthases, but upregulated the glycolytic enzymes in the roots and downregulated the expression of genes involved in the cell cycle and elongation. The physiological assay showed that SA treatment significantly increased PDC, ADH, and LDH activity by 36.69%, 43.66%, and 61.60%, respectively; root ethanol concentration by 62.95%; and lactate efflux by 23.20%, and significantly decreased the concentrations of pyruvate and most TCA cycle intermediates, the complex V activity, ATP content, and ATP/ADP ratio. As a consequence, SA significantly inhibited root growth. AC treatment reversed the changes caused by SA and alleviated the inhibition of root growth. In conclusion, NH4+ treatment alone may cause hypoxic stress in the roots, inhibit energy generation, suppress cell division and elongation, and ultimately inhibit root growth, and adding HCO3- remarkably alleviates the NH4+-induced inhibitory effects on root growth largely by attenuating the hypoxic stress.

2.
Plant Signal Behav ; 16(12): 1991687, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34753392

RESUMO

Ammonium (NH4+) is one of the most important nutrients required by plants. However, a high concentration of NH4+ as the sole nitrogen source suppresses plant growth. Although nitrate (NO3-) can alleviate NH4+ toxicity, the mechanisms underlying this ability have not been fully elucidated. In this study, wheat plants were cultivated in hydroponic solution with 7.5 mM NO3- (control), 7.5 mM NH4+ (sole ammonium, SA) or 7.5 mM NH4+ plus 1.0 mM NO3- (ammonium and nitrate, AN). The results showed that compared with the control, the SA treatment significantly decreased root growth, protein content and the concentrations of most intermediates and the activity of enzymes from the tricarboxylic acid (TCA) cycle. Moreover, increased the activity of plasma membrane H+-ATPase and the rate of H+ efflux along roots, caused solution acidification, and increased the activity of mitochondrial respiratory chain complexes I-IV and the contents of protein-bound carbonyls and malondialdehyde in roots. SA treatment induced ultrastructure disruption and reduced the viability of root cells. Compared with the SA treatment, the AN treatment increased root growth, protein content, the concentrations of most intermediates and the activity of enzymes from the TCA cycle. Furthermore, AN treatment decreased the rate of H+ efflux, retarded medium acidification, decreased protein carbonylation and lipid peroxidation in roots and relieved ultrastructure disruption and increased the viability of root cells. Taken together, these results indicate that NO3--dependent alleviation of NH4+ toxicity in wheat seedlings is closely associated with physiological processes that mediate TCA cycle, relieve rhizospheric acidification and decrease the production of ROS and oxidative damage.


Assuntos
Compostos de Amônio , Compostos de Amônio/metabolismo , Ciclo do Ácido Cítrico , Concentração de Íons de Hidrogênio , Nitratos/metabolismo , Nitrogênio/metabolismo , Estresse Oxidativo , Raízes de Plantas/metabolismo , Triticum/metabolismo
3.
Plants (Basel) ; 10(5)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065615

RESUMO

To better understand the source-sink flow and its relationships with zinc (Zn) and other nutrients in wheat (Triticum aestivum L.) plants for biofortification and improving grain nutritional quality, the effects of reducing the photoassimilate source (through the flag leaf removal and spike shading) or sink (through the removal of all spikelets from one side of the spike, i.e., 50% spikelets removal) in the field of the accumulation of Zn and other nutrients in grains of two wheat cultivars (Jimai 22 and Jimai 44) were investigated at two soil Zn application levels. The kernel number per spike (KNPS), single panicle weight (SPW), thousand kernel weight (TKW), total grain weight (TGW) sampled, concentrations and yields of various nutrient elements including Zn, iron (Fe), manganese (Mn), copper (Cu), nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg), phytate phosphorus (phytate-P), phytic acid (PA) and phytohormones (ABA: abscisic acid, and the ethylene precursor ACC: 1-aminocylopropane-1-carboxylic acid), and carbon/N ratios were determined. Soil Zn application significantly increased the concentrations of grain Zn, N and K. Cultivars showing higher grain yields had lower grain protein and micronutrient nutritional quality. SPW, KNPS, TKW (with the exception of TKW in the removal of half of the spikelets), TGW, and nutrient yields in wheat grains were most severely reduced by half spikelet removal, secondly by spike shading, and slightly by flag leaf removal. Grain concentrations of Zn, N and Mg consistently showed negative correlations with SPW, KNPS and TGW, but positive correlations with TKW. There were general positive correlations among grain concentrations of Zn, Fe, Mn, Cu, N and Mg, and the bioavailability of Zn and Fe (estimated by molar ratios of PA/Zn, PA/Fe, PA × Ca/Zn, or PA × Ca/Fe). Although Zn and Fe concentrations were increased and Ca was decreased in treatments of half spikelet removal and spike shading, the treatments simultaneously increased PA and limited the increase in bioavailability of Zn and Fe. In general, different nutrient elements interact with each other and are affected to different degrees by source-sink manipulation. Elevated endogenous ABA levels and ABA/ACC ratios were associated with increased TKW and grain-filling of Zn, Mn, Ca and Mg, and inhibited K in wheat grains. However, the effects of ACC were diametrically opposite. These results provide a basis for wheat grain biofortification to alleviate human malnutrition.

4.
Front Plant Sci ; 12: 656696, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135921

RESUMO

Wheat is one of the most important food crops worldwide. In recent decades, fertilizers, especially nitrogen (N), have been increasingly utilized to maximize wheat productivity. However, a large proportion of N is not used by plants and is in fact lost into the environment and causes serious environmental pollution. Therefore, achieving a low N optimum via efficient physiological and biochemical processes in wheat grown under low-N conditions is highly important for agricultural sustainability. Although N stress-related N capture in wheat has become a heavily researched subject, how this plant adapts and responds to N starvation has not been fully elucidated. This review summarizes the current knowledge on the signaling mechanisms activated in wheat plants in response to N starvation. Furthermore, we filled the putative gaps on this subject with findings obtained in other plants, primarily rice, maize, and Arabidopsis. Phytohormones have been determined to play essential roles in sensing environmental N starvation and transducing this signal into an adjustment of N transporters and phenotypic adaptation. The critical roles played by protein kinases and critical kinases and phosphatases, such as MAPK and PP2C, as well as the multifaceted functions of transcription factors, such as NF-Y, MYB, DOF, and WRKY, in regulating the expression levels of their target genes (proteins) for low-N tolerance are also discussed. Optimization of root system architecture (RSA) via root branching and thinning, improvement of N acquisition and assimilation, and fine-tuned autophagy are pivotal strategies by which plants respond to N starvation. In light of these findings, we attempted to construct regulatory networks for RSA modification and N uptake, transport, assimilation, and remobilization.

5.
Int J Biol Macromol ; 130: 915-921, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30802515

RESUMO

Our previous report described that high-pressure microfluidization (HPM) treatment can disaggregate peanut protein isolates (PPIs) to prepare antihypertensive peptide fractions. In the present study, we investigated the driving forces of disaggregation and reaggregation of PPIs in aqueous dispersion induced by HPM treatment and discussed the mechanism. The driving forces of hydrogen bonds, surface hydrophobicity, sulfhydryl/disulfide bonds (SH/SS) and ζ-potential, which are responsible for disaggregation and reaggregation, were studied. HPM treatment changed the polar environment and promoted surface hydrophobicity and the formation of disulfide bonds (SS), while the free sulfhydryl (SH) group content was decreased. The magnitude of the ζ-potential and ß-sheet content increased when the pressure was ≤120 MPa. However, the magnitude of those values decreased when the pressure was >120 MPa. Hydrophobic interactions, SH/SS interchange reactions, hydrogen bonds and electrostatic interactions cannot individually induce changes in PPIs. Combination of the applied forces drove the disaggregation and reaggregation of PPIs in aqueous dispersion.


Assuntos
Arachis/química , Técnicas Analíticas Microfluídicas , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Pressão , Agregados Proteicos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformação Proteica , Análise Espectral
6.
Physiol Plant ; 166(1): 226-239, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30221359

RESUMO

Photosynthesis in non-foliar organs plays an important role in crop growth and productivity, and it has received considerable research attention in recent years. However, compared with the capability of photosynthetic CO2 fixation in leaves, the distinct attributes of photosynthesis in the non-foliar organs of wheat (a C3 species) are unclear. This review presents a comprehensive examination of the photosynthetic characteristics of non-foliar organs in wheat. Compared with leaves, non-foliar organs had a higher capacity to refix respired CO2 , higher tolerance to environmental stresses and slower terminal senescence after anthesis. Additionally, whether C4 photosynthetic metabolism exists in the non-foliar organs of wheat is discussed, as is the advantage of photosynthesis in non-foliar organs during times of abiotic stress. Introducing the photosynthesis-related genes of C4 plants into wheat, which are specifically expressed in non-foliar organs, can be a promising approach for improving wheat productivity.


Assuntos
Grão Comestível/metabolismo , Fotossíntese/fisiologia , Dióxido de Carbono/metabolismo , Triticum/metabolismo
7.
Front Plant Sci ; 9: 677, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29881394

RESUMO

To alleviate human zinc (Zn) deficiency, it is worthy to develop rational agronomic managements to achieve high yielding and high resource-use efficiency wheat (Triticum aestivum L.) grains biofortified with Zn. Effects of application of three rates of nitrogen (N) fertilizer (75,200 and 275 kg·ha-1) to soil in combination with three foliar applications (deionized water, Zn alone, and a combination of Zn and sucrose) on grain yield, yield components, grain Zn concentration, protein, phytic acid (PA), phosphorus (P), calcium (Ca), and carbon (C), as well as on Zn bioavailability, were investigated in four wheat cultivars ("Jinan 17," "Jimai 20," "Jimai 22," and "Luyuan 502") under field conditions. Enhanced N increased Zn and protein concentrations as well as bioavailability; excessive N input did not result in further improvements. Zinc spraying was more effective than soil fertilizer N application, the spray of Zn (with or without sucrose) increased grain Zn concentrations by 11.1-15.6 mg·kg-1 (27.1-38.1%), and increased grain Zn bioavailability, estimated using total daily absorbed Zn (TAZ) and molar ratios of PA/Zn) and PA × Ca/Zn, by 0.4-0.6 mg d-1 (28.6-42.9%), 23.1-27.4% and 24.0-28.0%, respectively. Remarkably, increases caused by 'Zn + sucrose' were higher than spraying Zn alone. Grain Zn bioavailability was more sensitive to the selection of cultivar than Zn concentrations. Among cultivars, the higher the grain yields and concentrations of antinutritional compounds, the lower the grain Zn nutritional quality would be. 200 kg N ha-1 application rate in combination with foliar spraying of "Zn + sucrose" maximized grain Zn concentrations of "Jinan 17," "Jimai 20," "Jimai 22," and "Luyuan 502" to be 59.4, 56.9, 55.8, and 60.9 mg kg-1, respectively, achieving the target value for biofortification. Additionally, PA/Zn and PA × Ca/Zn of "Jinan 17," "Jimai 20," and "Luyuan 502" were <15 and 200, and TAZ was maximized to be 2.2, 2.0, and 2.1 mg d-1, respectively, indicating higher bioavailability. Therefore, optimal soil N and foliar Zn management together with suitable cultivars maintained high grain yield with lower N input and could substantially increase grain Zn nutritional quality simultaneously.

8.
Ann Bot ; 117(3): 363-77, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26749590

RESUMO

BACKGROUND: Phosphorus (P), iron (Fe) and zinc (Zn) are essential elements for plant growth and development, but their availability in soil is often limited. Intercropping contributes to increased P, Fe and Zn uptake and thereby increases yield and improves grain nutritional quality and ultimately human health. A better understanding of how intercropping leads to increased plant P, Fe and Zn availability will help to improve P-fertilizer-use efficiency and agronomic Fe and Zn biofortification. SCOPE: This review synthesizes the literature on how intercropping of legumes with cereals increases acquisition of P, Fe and Zn from soil and recapitulates what is known about root-to-shoot nutrient translocation, plant-internal nutrient remobilization and allocation to grains. CONCLUSIONS: Direct interspecific facilitation in intercropping involves below-ground processes in which cereals increase Fe and Zn bioavailability while companion legumes benefit. This has been demonstrated and verified using isotopic nutrient tracing and molecular analysis. The same methodological approaches and field studies should be used to explore direct interspecific P facilitation. Both niche complementarity and interspecific facilitation contribute to increased P acquisition in intercropping. Niche complementarity may also contribute to increased Fe and Zn acquisition, an aspect poorly understood. Interspecific mobilization and uptake facilitation of sparingly soluble P, Fe and Zn from soil, however, are not the only determinants of the concentrations of P, Fe and Zn in grains. Grain yield and nutrient translocation from roots to shoots further influence the concentrations of these nutrients in grains.


Assuntos
Agricultura/métodos , Produtos Agrícolas/metabolismo , Fabaceae/metabolismo , Ferro/metabolismo , Fósforo/metabolismo , Solo/química , Zinco/metabolismo
9.
Ying Yong Sheng Tai Xue Bao ; 26(4): 1263-70, 2015 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-26259472

RESUMO

Intercropping facilitates the efficient utilization of land, light, water and nutrients. It is, therefore, important to increase the biodiversity of farmland and to develop sustainable ecological agriculture in both theory and practice. Intercropping helps improve the mobilization and uptake of soil iron (Fe) and zinc (Zn) and corresponding nutritional status in the plants, thus achieving grain micronutrient biofortification. In this review, phenomena of the improvement of Fe and Zn nutrition in dicotyledonous plants as affected by intercropping with gramineous plants (e.g. maize/peanut intercropping) were summarized. Moreover, the possible mechanisms in relation to interspecific rhizosphere molecular and physiological processes, as well as the changes in interspecific root morphology and distribution and microorganisms in the rhizosphere were elucidated. The accumulation, transfer and distribution of Fe and Zn in the plants in intercropping systems were also reviewed. The possible affecting factors on nutrients of Fe and Zn were analyzed. Based on the present advances in the mobilization and acquisition of soil Fe and Zn, and their accumulation and distribution in plants as well as the related management and environment influence factors, some new research questions were pointed out. Quantitative analysis, dynamic and systemic researches and field studies on Fe and Zn transfer from soil to plant in intercropping systems should be strengthened in the future.


Assuntos
Agricultura/métodos , Produtos Agrícolas/metabolismo , Ferro/análise , Solo/química , Zinco/análise , Arachis , Produtos Agrícolas/crescimento & desenvolvimento , Raízes de Plantas , Rizosfera , Zea mays
10.
Sci China Life Sci ; 56(9): 823-34, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23900569

RESUMO

Most research on micronutrients in maize has focused on maize grown as a monocrop. The aim of this study was to determine the effects of intercropping on the concentrations of micronutrients in maize grain and their acquisition via the shoot. We conducted field experiments to investigate the effects of intercropping with turnip (Brassica campestris L.), faba bean (Vicia faba L.), chickpea (Cicer arietinum L.), and soybean (Glycine max L.) on the iron (Fe), manganese (Mn), copper (Cu) and zinc (Zn) concentrations in the grain and their acquisition via the above-ground shoots of maize (Zea mays L.). Compared with monocropped maize grain, the grain of maize intercropped with legumes showed lower concentrations of Fe, Mn, Cu, and Zn and lower values of their corresponding harvest indexes. The micronutrient concentrations and harvest indexes in grain of maize intercropped with turnip were the same as those in monocropped maize grain. Intercropping stimulated the above-ground maize shoot acquisition of Fe, Mn, Cu and Zn, when averaged over different phosphorus (P) application rates. To our knowledge, this is the first report on the effects of intercropping on micronutrient concentrations in maize grain and on micronutrients acquisition via maize shoots (straw+grain). The maize grain Fe and Cu concentrations, but not Mn and Zn concentrations, were negatively correlated with maize grain yields. The concentrations of Fe, Mn, Cu, and Zn in maize grain were positively correlated with their corresponding harvest indexes. The decreased Fe, Mn, Cu, and Zn concentrations in grain of maize intercropped with legumes were attributed to reduced translocation of Fe, Mn, Cu, and Zn from vegetative tissues to grains. This may also be related to the delayed senescence of maize plants intercropped with legumes. We conclude that turnip/maize intercropping is beneficial to obtain high maize grain yield without decreased concentrations of Fe, Mn, Cu, and Zn in the grain. Further research is required to clarify the mechanisms underlying the changes in micronutrient concentrations in grain of intercropped maize.


Assuntos
Brassica napus/metabolismo , Produtos Agrícolas/metabolismo , Fabaceae/metabolismo , Metais/metabolismo , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA