Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 44(7): 1500-1518, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36639570

RESUMO

As a major class of medicine for treating the lethal type of castration-resistant prostate cancer (PCa), long-term use of androgen receptor (AR) antagonists commonly leads to antiandrogen resistance. When AR signaling pathway is blocked by AR-targeted therapy, glucocorticoid receptor (GR) could compensate for AR function especially at the late stage of PCa. AR-GR dual antagonist is expected to be a good solution for this situation. Nevertheless, no effective non-steroidal AR-GR dual antagonist has been reported so far. In this study, an AR-GR dual binder H18 was first discovered by combining structure-based virtual screening and biological evaluation. Then with the aid of computationally guided design, the AR-GR dual antagonist HD57 was finally identified with antagonistic activity towards both AR (IC50 = 0.394 µM) and GR (IC50 = 17.81 µM). Moreover, HD57 could effectively antagonize various clinically relevant AR mutants. Further molecular dynamics simulation provided more atomic insights into the mode of action of HD57. Our research presents an efficient and rational strategy for discovering novel AR-GR dual antagonists, and the new scaffold provides important clues for the development of novel therapeutics for castration-resistant PCa.


Assuntos
Antagonistas de Androgênios , Neoplasias da Próstata , Masculino , Humanos , Antagonistas de Androgênios/farmacologia , Receptores de Glucocorticoides/metabolismo , Receptores Androgênicos/metabolismo , Antagonistas de Receptores de Andrógenos/farmacologia , Neoplasias da Próstata/metabolismo , Linhagem Celular Tumoral
2.
Cell Death Discov ; 8(1): 147, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365618

RESUMO

Receptor interacting serine/threonine protein kinase 1 (RIPK1) activation and necroptosis have been genetically and mechanistically linked with human multiple sclerosis and neurodegenerative diseases for which demyelination is a common key pathology. Demyelination can be healed through remyelination which is mediated by new oligodendrocytes derived from the adult oligodendrocyte progenitor cells (OPCs). Unfortunately, the efficiency of remyelination declines with progressive aging partially due to the depletion of OPCs following chronic or repeated demyelination. However, to our knowledge, so far there is no drug which enhances proliferation of OPCs, and it is unknown whether inhibiting RIPK1 activity directly affect OPCs, the central player of remyelination. Using TNFα induced RIPK1-dependent necroptosis in Jurkat FADD-/- cells as a cell death assay, we screened from 2112 FDA-approved drugs and the drug candidates of new RIPK1 inhibitors selected by ourselves, and identified ZJU-37, a small molecule modified by introducing an amide bond to Nec-1s, is a new RIPK1 kinase inhibitor with higher potency than Nec-1s which has the best reported potency. We unveil in addition to protecting myelin from demyelination and axons from degeneration, ZJU-37 exhibits a new role on promoting proliferation of OPCs and enhancing remyelination by inhibiting RIPK1 kinase activity with higher potency than Nec-1s. Mechanistically, ZJU-37 promotes proliferation of OPCs by enhancing the transcription of platelet derived growth factor receptor alpha via NF-κB pathway. This work identifies ZJU-37 as a new drug candidate which enhances remyelination by promoting proliferation of OPCs, paving the way for a potential drug to enhance myelin repair.

3.
Mol Cell ; 81(2): 370-385.e7, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33271062

RESUMO

The mechanisms of cellular energy sensing and AMPK-mediated mTORC1 inhibition are not fully delineated. Here, we discover that RIPK1 promotes mTORC1 inhibition during energetic stress. RIPK1 is involved in mediating the interaction between AMPK and TSC2 and facilitate TSC2 phosphorylation at Ser1387. RIPK1 loss results in a high basal mTORC1 activity that drives defective lysosomes in cells and mice, leading to accumulation of RIPK3 and CASP8 and sensitization to cell death. RIPK1-deficient cells are unable to cope with energetic stress and are vulnerable to low glucose levels and metformin. Inhibition of mTORC1 rescues the lysosomal defects and vulnerability to energetic stress and prolongs the survival of RIPK1-deficient neonatal mice. Thus, RIPK1 plays an important role in the cellular response to low energy levels and mediates AMPK-mTORC1 signaling. These findings shed light on the regulation of mTORC1 during energetic stress and unveil a point of crosstalk between pro-survival and pro-death pathways.


Assuntos
Proteína 5 Relacionada à Autofagia/genética , Proteína de Domínio de Morte Associada a Fas/genética , Intestino Grosso/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Animais Recém-Nascidos , Proteína 5 Relacionada à Autofagia/deficiência , Caspase 8/genética , Caspase 8/metabolismo , Morte Celular/genética , Proteína de Domínio de Morte Associada a Fas/deficiência , Regulação da Expressão Gênica , Glucose/antagonistas & inibidores , Glucose/farmacologia , Células HEK293 , Células HT29 , Humanos , Intestino Grosso/efeitos dos fármacos , Intestino Grosso/patologia , Células Jurkat , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metformina/antagonistas & inibidores , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Transdução de Sinais , Sirolimo/farmacologia , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
4.
Toxicol Lett ; 319: 85-94, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31730885

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a chronic hepatic disease associated with the excessive accumulation of lipids in the liver. Premenopausal women are protected from the liver metabolic complications of obesity compared with body mass index (BMI)-matched men. This protection may be related to estrogen's ability to limit liver fat accumulation. Aryl hydrocarbon receptor (AhR), a novel regulator of NAFLD, may be an important target for regulating estrogen homeostasis. In present study, we used benzo[a]pyrene (BaP), a classic and potent ligand of AhR, to activate AhR pathway causes overexpression of the estrogen-metabolizing enzyme cytochrome P450 1A1 (CYP1A1) and affects the expression of important genes involved in hepatic lipid regulation. BaP induces CYP1A1 expression through AhR signaling and inhibits the protective effect of 17ß-estradiol (E2) on hepatic steatosis, characterized by triglyceride accumulation, and markers of liver damage are significantly elevated. The expression of adipogenic genes involved in the hepatic lipid metabolism of sterol regulatory element-binding protein-1c (SREBP-1c) was increased compared with that in the control group. Furthermore, the mRNA and protein levels of peroxisome proliferator-activated receptor alpha (PPARα), which is involved in fatty acid oxidation, were significantly reduced. Taken together, our results revealed that the steatotic effect of AhR is likely due to overexpression of the E2 metabolic enzyme CYP1A1, which affects the estrogen signaling pathway, leading to the suppression of fatty acid oxidation, inhibition of the hepatic export of triglycerides, and an increase in peripheral fat mobilization. The results from this study may help establish AhR as a novel therapeutic and preventive target for fatty liver disease.


Assuntos
Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Animais , Benzo(a)pireno/farmacologia , Citocromo P-450 CYP1A1/biossíntese , Citocromo P-450 CYP1A1/genética , Estradiol/farmacologia , Estrogênios/metabolismo , Feminino , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , PPAR alfa/biossíntese , PPAR alfa/genética , Receptores de Hidrocarboneto Arílico/agonistas , Transdução de Sinais/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 1/biossíntese , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Triglicerídeos/metabolismo
5.
Genes Dev ; 30(7): 870, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27036968

RESUMO

In the above-mentioned article, it has come to the authors' attention that, during the preparation of Figure 5C and Supplemental Figure S2C for the final version of this article, the authors unintentionally assembled incorrect tubulin immunoblots due to similarities in the markings or names, such as FLT3 versus FT, between two similar experiments. The amended versions of these figures are shown below. Neither the quantitative determinations nor the conclusions of this article are altered. The authors apologize for these errors.

7.
J Cell Biol ; 210(5): 705-16, 2015 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-26323688

RESUMO

Hexokinase II (HK2), a key enzyme involved in glucose metabolism, is regulated by growth factor signaling and is required for initiation and maintenance of tumors. Here we show that metabolic stress triggered by perturbation of receptor tyrosine kinase FLT3 in non-acute myeloid leukemia cells sensitizes cancer cells to autophagy inhibition and leads to excessive activation of chaperone-mediated autophagy (CMA). Our data demonstrate that FLT3 is an important sensor of cellular nutritional state and elucidate the role and molecular mechanism of CMA in metabolic regulation and mediating cancer cell death. Importantly, our proteome analysis revealed that HK2 is a CMA substrate and that its degradation by CMA is regulated by glucose availability. We reveal a new mechanism by which excessive activation of CMA may be exploited pharmacologically to eliminate cancer cells by inhibiting both FLT3 and autophagy. Our study delineates a novel pharmacological strategy to promote the degradation of HK2 in cancer cells.


Assuntos
Autofagia/fisiologia , Hexoquinase/metabolismo , Leucemia Mieloide/enzimologia , Leucemia Mieloide/patologia , Chaperonas Moleculares/metabolismo , Proteólise , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Benzotiazóis/farmacologia , Linhagem Celular Tumoral , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Lisossomos/patologia , Compostos de Fenilureia/farmacologia , Tirosina Quinase 3 Semelhante a fms/metabolismo
8.
Chem Commun (Camb) ; 51(92): 16483-5, 2015 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-26414750

RESUMO

An efficient approach for the generation of benzo[b]naphtho[2,3-d]oxocin-6-ones through a palladium-catalyzed tandem reaction of 2-alkynylphenol with 2-(2-bromobenzylidene)cyclobutanone is described. This tandem process afforded the fused polycycles easily, with the formation of three bonds with high efficiency, starting from easily available materials. Good functional group tolerance as well as excellent selectivity was displayed.

9.
J Clin Invest ; 125(1): 5-13, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25654545

RESUMO

Autophagy is an important intracellular catabolic mechanism critically involved in regulating tissue homeostasis. The implication of autophagy in human diseases and the need to understand its regulatory mechanisms in mammalian cells have stimulated research efforts that led to the development of high-throughput screening protocols and small-molecule modulators that can activate or inhibit autophagy. Herein we review the current landscape in the development of screening technology as well as the molecules and pharmacologic agents targeting the regulatory mechanisms of autophagy. We also evaluate the potential therapeutic application of these compounds in different human pathologies.


Assuntos
Autofagia/efeitos dos fármacos , Animais , Sinalização do Cálcio , Inibidores Enzimáticos/farmacologia , Humanos , Inibidores de Fosfoinositídeo-3 Quinase , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores
10.
BMC Cancer ; 14: 248, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24716791

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) has been associated with diabetes and obesity, but a possible connection with the metabolic syndrome (MetS) and its potential interaction with hepatitis and cirrhosis are open to discussion. Our previous investigations have shown that GGPPS1 plays a critical role during hyperinsulinism. In this report, the expression and distribution of GGPPS1 in liver cancer, and its clinical significance were investigated. METHODS: 70 patients with hepatocellular carcinoma (HCC) were included in this study. Three different types of tissues from each HCC patient were assembled immediately after surgical resection: tumor-free tissue >5 cm far from tumor edge (TF), adjacent nonmalignant tissue within 2 cm (AT), and tissue from the tumor (TT). Normal liver tissues from 10 liver transplant donors served as healthy control (HC) while 10 patients with liver cirrhosis as cirrhosis control (CC). The expression and distribution of GGPPS1 were detected by immunohistochemistry, western blots, or real-time PCR. The relationship between the expression of GGPPS1 and clinic pathologic index were analyzed. RESULTS: We found that GGPPS1 was intensified mainly in the cytoplasm of liver tumor cells. Both the expression of GGPPS1 mRNA and protein were upregulated in TT comparing to AT or TF. Meanwhile, HCC patients with cirrhosis had relative higher expression of GGPPS1. In addition, many pathologic characters show close correlation with GGPPS1, such as tumor stage, vessel invasion, and early recurrence. CONCLUSION: GGPPS1 may play a critical role during the development of HCC from cirrhosis and is of clinical significance for predicting biological character of HCC.


Assuntos
Carcinoma Hepatocelular/genética , Dimetilaliltranstransferase/genética , Farnesiltranstransferase/genética , Geraniltranstransferase/genética , Neoplasias Hepáticas/genética , Recidiva Local de Neoplasia/genética , Adulto , Idoso , Biomarcadores Tumorais , Carcinoma Hepatocelular/patologia , Dimetilaliltranstransferase/biossíntese , Farnesiltranstransferase/biossíntese , Feminino , Fibrose/complicações , Fibrose/genética , Fibrose/patologia , Regulação Neoplásica da Expressão Gênica , Geraniltranstransferase/biossíntese , Humanos , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/patologia , Estadiamento de Neoplasias , RNA Mensageiro/biossíntese
11.
Genes Dev ; 27(15): 1718-30, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23913924

RESUMO

Missense mutations in the gene TP53, which encodes p53, one of the most important tumor suppressors, are common in human cancers. Accumulated mutant p53 proteins are known to actively contribute to tumor development and metastasis. Thus, promoting the removal of mutant p53 proteins in cancer cells may have therapeutic significance. Here we investigated the mechanisms that govern the turnover of mutant p53 in nonproliferating tumor cells using a combination of pharmacological and genetic approaches. We show that suppression of macroautophagy by multiple means promotes the degradation of mutant p53 through chaperone-mediated autophagy in a lysosome-dependent fashion. In addition, depletion of mutant p53 expression due to macroautophagy inhibition sensitizes the death of dormant cancer cells under nonproliferating conditions. Taken together, our results delineate a novel strategy for killing tumor cells that depend on mutant p53 expression by the activation of chaperone-mediated autophagy and potential pharmacological means to reduce the levels of accumulated mutant p53 without the restriction of mutant p53 conformation in quiescent tumor cells.


Assuntos
Autofagia/genética , Chaperonas Moleculares/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Ácidos Borônicos/farmacologia , Bortezomib , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Leupeptinas/farmacologia , Lisossomos/metabolismo , Mutação , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Pirazinas/farmacologia , Ubiquitinação
12.
Autophagy ; 6(1): 61-6, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19901552

RESUMO

Autophagy functions as an important catabolic mechanism by mediating the turnover of intracellular organelles and protein complexes. Although the induction of autophagy by starvation has been extensively studied, we still understand very little about how autophagy is regulated under normal nutritional conditions. Here we describe a study using a small molecule autophagy inducer, fluspirilene, as a tool to explore the mechanism of autophagy induction in normal living cells. We confirm the activity of fluspirilene in inhibiting Ca(2+) flux. Furthermore, we show that reducing intracellular Ca(2+) prevents the cleavage of ATG5, which in turn increases the levels of full-length ATG5 and ATG12-ATG5 conjugate. Using siRNA mediated gene silencing, we demonstrate that inhibiting calpain1 is sufficient to induce autophagy in living cells. We conclude that calpain1 plays an important role in controlling the levels of autophagy in normal living cells by regulating the levels of a key signaling molecule, ATG12-ATG5 conjugate.


Assuntos
Autofagia/genética , Calpaína/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Autofagia/efeitos dos fármacos , Proteína 12 Relacionada à Autofagia , Proteína 5 Relacionada à Autofagia , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/metabolismo , Calpaína/antagonistas & inibidores , Calpaína/genética , Calpaína/metabolismo , Células Cultivadas , Antagonistas de Dopamina/farmacologia , Fluspirileno/farmacologia , Alimentos , Células HeLa , Humanos , Camundongos , Ligação Proteica/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/genética , RNA Interferente Pequeno/farmacologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo
13.
Org Biomol Chem ; 4(9): 1663-6, 2006 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-16633557

RESUMO

Three-component reactions of aldehydes, amines, and diethyl phosphite catalyzed by Mg(ClO4)2 or molecular iodine afforded the corresponding alpha-amino phosphonates in excellent yields under mild reaction conditions.

14.
Org Biomol Chem ; 4(1): 126-9, 2006 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-16358006

RESUMO

A mild and efficient route for the synthesis of quinolines and polycyclic quinolines via Friedländer annulation, utilizing molecular iodine (1 mol%) as a new catalyst, is described.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA