Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(22): 28493-28504, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38798187

RESUMO

This study aims to enhance the performance of perovskite solar cells (PSCs) by optimizing the interface between the perovskite and electron transport layers (ETLs). Additionally, we plan to protect the absorber layer from ultraviolet (UV) degradation using a ternary oxide system comprising SnO2, strontium stannate (SrSnO3), and strontium oxide (SrO). In this structure, the SnO2 layer functions as an electron transport layer, SrSnO3 acts as a layer for UV filtration, and SrO is employed to passivate the interface. SrSnO3 is characterized by its chemical stability, electrical conductivity, extensive wide band gap energy, and efficient absorption of UV radiation, all of which significantly enhance the photostability of PSCs against UV radiation. Furthermore, incorporating SrSnO3 into the ETL improves its electronic properties, potentially raising the energy level and improving alignment, thereby enhancing the electron transfer from the perovskite layer to the external circuit. Integrating SrO at the interface between the ETL and perovskite layer reduces interface defects, thereby reducing charge recombination and improving electron transfer. This improvement results in higher solar cell efficiency, reduced hysteresis, and extended device longevity. The benefits of this method are evident in the observed improvements: a noticeable increase in open-circuit voltage (Voc) from 1.12 to 1.16 V, an enhancement in the fill factor from 79.4 to 82.66%, a rise in the short-circuit current density (Jsc) from 24.5 to 24.9 mA/cm2 and notably, a marked improvement in the power conversion efficiency (PCE) of PSCs, from 21.79 to 24.06%. Notably, the treated PSCs showed only a slight decline in PCE, reducing from 24.15 to 22.50% over nearly 2000 h. In contrast, untreated SnO2 perovskite devices experienced a greater decline, with efficiency decreasing from 21.79 to 17.83% in just 580 h.

2.
ChemSusChem ; 16(23): e202300833, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37584184

RESUMO

With the rapid development in perovskite solar cell (PSC), high efficiency has been achieved, but the long-term operational stability is still the most important challenges for the commercialization of this emerging photovoltaic technology. So far, bi-dopants lithium bis(trifluoromethylsulfonyl)-imide (Li-TFSI)/4-tert-butylpyridine (t-BP)-doped hole-transporting materials (HTM) have led to state-of-the art efficiency in PSCs. However, such dopants have several drawbacks in terms of stability, including the complex oxidation process, undesirable ion migration and ultra-hygroscopic nature. Herein, a fluorine-containing organic Lewis acid dopant bis(pentafluorophenyl)zinc (Zn-FP) with hydrophobic property and high migration barrier has been employed as a potential alternative to widely employed bi-dopants Li-TFSI/t-BP for poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA). The resulting Zn-FP-based PSCs achieve a maximum PCE of 20.34 % with hysteresis-free current density-voltage (J-V) scans. Specifically, the unencapsulated device exhibits a significantly advanced of operational stability under the International Summit on Organic Photovoltaic Stability protocols (ISOS-L-1), maintaining over 90 % of the original efficiency after operation for 1000 h under continuous 1-sun equivalent illumination in N2 atmosphere in both forward and reverse J-V scan.

3.
Chem Mater ; 35(15): 5914-5923, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37576588

RESUMO

A group of small-molecule hole-transporting materials (HTMs) that are based on fluorenylidene fragments were synthesized and tested in perovskite solar cells (PSCs). The investigated compounds were synthesized by a facile two-step synthesis, and their properties were measured using thermoanalytical, optoelectronic, and photovoltaic methods. The champion PSC device that was doped with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) reached a power conversion efficiency of 22.83%. The longevity of the PSC device with the best performing HTM, V1387, was evaluated in different conditions and compared to that of 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-MeOTAD), showing improved stability. This work provides an alternative HTM strategy for fabricating efficient and stable PSCs.

4.
Adv Mater ; 35(31): e2211324, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36869425

RESUMO

The interface tailoring is crucial for the efficiency and stability of Perovskite Solar Cells (PSCs). The reported interface engineering primarily focuses on the energy level turning and trap state passivation to improve the photovoltaic performance of PSCs. In this review, molecule modifications are classified according to the basics of electron transfer mechanisms for the interface tailoring of materials. An in-depth analysis of energy level modification and trap passivation, as well as the universal Density Functional Theory (DFT) method employed in interface tailoring. In addition, strategies to address environmental protection and large-scale mini-modules fabrication by interface engineering are also discussed. This review can guide the researchers in understanding interface engineering to design interface materials for efficient, stable, and eco-friendly PSCs.

5.
Adv Mater ; 35(25): e2300720, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36934398

RESUMO

Defective and perfect sites naturally exist within electronic semiconductors, and considerable efforts to reduce defects to improve the performance of electronic devices, especially in hybrid organic-inorganic perovskites (ABX3 ), are undertaken. Herein, foldable hole-transporting materials (HTMs) are developed, and they extend the wavefunctions of A-site cations of perovskite, which, as hybridized electronic states, link the trap states (defective site) and valence band edge (perfect site) between the naturally defective and perfect sites of the perovskite surface, finally converting the discrete trap states of the perovskite as the continuous valence band to reduce trap recombination. Tailoring the foldability of the HTMs tunes the wavefunctions between defective and perfect surface sites, allowing the power conversion efficiency of a small cell to reach 23.22% and that of a mini-module (6.5 × 7 cm, active area = 30.24 cm2 ) to reach as high as 21.71% with a fill factor of 81%, the highest value reported for non-spiro-OMeTAD-based perovskite solar modules.

6.
Cell Rep Phys Sci ; 4(3): 101304, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36970227

RESUMO

Formamidinium lead iodide-based solar cells show promising device reliability. The grain imperfection can be further suppressed by developing powder methodology. The water uptake capability is critical for the stability of α-formamidinium lead triiodide (FAPbI3) thin films, and elucidating the migration of hydrogen species is challenging using routine techniques such as imaging or mass spectroscopy. Here, we decipher the proton diffusion to quantify indirect monitoring of H migration by following the N-D vibration using transmission infrared spectroscopy. The technique allows a direct assessment of the perovskite degradation associated with moisture. The inclusion of Cs in FAPbI3, reveals significant differences in proton diffusion rates, attesting to its impact. CsFAPbI3's ability to block the active layer access by water molecules is five times higher than α-FAPbI3, which is significantly higher than methylammonium lead triiodide (MAPbI3). Our protocol directly probes the local environment of the material to identify its intrinsic degradation mechanisms and stability, a key requirement for optoelectronic applications.

7.
Angew Chem Int Ed Engl ; 61(48): e202212891, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36200274

RESUMO

Hole-transporting materials (HTMs) based on the 10H, 10'H-9,9'-spirobi [acridine] core (BSA50 and BSA51) were synthesized, and their electronic properties were explored. Experimental and theoretical studies show that the presence of rigid 3,6-dimethoxy-9H-carbazole moieties in BSA 50 brings about improved hole mobility and higher work function compared to bis(4-methoxyphenyl)amine units in BSA51, which increase interfacial hole transportation from perovskite to HTM. As a result, perovskite solar cells (PSCs) based on BSA50 boost power conversion efficiency (PCE) to 22.65 %, and a PSC module using BSA50 HTM exhibits a PCE of 21.35 % (6.5×7 cm) with a Voc of 8.761 V and FF of 79.1 %. The unencapsulated PSCs exhibit superior stability to devices employing spiro-OMeTAD, retaining nearly 90 % of their initial efficiency after 1000 h operation output. This work demonstrates the high potential of molecularly engineered spirobi[acridine] derivatives as HTMs as replacements for spiro-OMeTAD.

8.
Artigo em Inglês | MEDLINE | ID: mdl-35535996

RESUMO

The development of a scalable chemical bath deposition (CBD) process facilitates the realization of electron-transporting layers (ETLs) for large-area perovskite solar modules (PSMs). Herein, a method to prepare a uniform and scalable thick Zn2SnO4 ETL by CBD, which yielded high-performance PSMs, is reported. This Zn2SnO4 ETL exhibits excellent electrical properties and enhanced optical transmittance in the visible region. Moreover, the Zn2SnO4 ETL influences the perovskite layer formation, yielding enhanced crystallinity, increased grain size, and a smoother surface, thus facilitating electron extraction and collection from the perovskite to the ETL. Zn2SnO4 thereby yields PSMs with a remarkable photovoltaic performance, low hysteresis index, and high device reproducibility. The champion PSM exhibited a power conversion efficiency (PCE) of 22.59%, being among the highest values published so far. In addition, the CBD Zn2SnO4-based PSMs exhibit high stability, retaining more than 88% of initial efficiency over 1000 h under continuous illumination. This demonstrates that CBD Zn2SnO4 is an appropriate ETL for high-efficiency PSMs and a viable new process for their industrialization.

9.
ACS Appl Mater Interfaces ; 14(19): 22053-22060, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35512181

RESUMO

Triarylamine end-capped-functionalized arylene-imidazole derivatives were synthesized from readily accessible, inexpensive precursors and employed as hole transporting materials (HTMs) in perovskite solar cells (PSCs). All the HTMs displayed high thermal decomposition temperatures (>410 °C), which is beneficial for realizing stable PSC devices. In addition, the new HTMs show appropriate energy level alignment with the perovskite layer, ensuring efficient hole transfer from perovskites to HTMs. Interestingly, PSCs fabricated with the triarylamine-functionalized imidazolyl-capped bithiophene molecule (DImBT-4D) as the HTM exhibited the best power conversion efficiency of 20.11%, comparable to that of the benchmark HTM spiro-OMeTAD, prompting it be a prospective candidate for large-scale PSC applications.

10.
Chem Mater ; 33(17): 7017-7027, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34552307

RESUMO

A set of novel branched molecules bearing a different number of 3,6-bis(4,4'-dimethoxydiphenylamino)carbazole-based (Cz-OMeDPA) periphery arms linked together by aliphatic chains have been developed, and their performance has been tested in perovskite solar cells (PSCs). Electrical and photovoltaic properties have been evaluated with respect to the number of Cz-OMeDPA moieties and the nature of the linking aliphatic chain. The isolated compounds possess sufficient thermal stability and are amorphous having high glass-transition temperatures (>120 °C) minimizing the risk of direct layer crystallization. The highest hole-drift mobility of µ0 = 3.1 × 10-5 cm2 V-1 s-1 is comparable to that of the reference standard spiro-OMeTAD (4.1 × 10-5 cm2 V-1 s-1) under identical conditions. Finally, PSCs employing two new HTMs (2Cz-OMeDPA and 3Cz-OMeDPA-OH) bearing two and three substituted carbazole chromophores, linked by an aliphatic chain, show a performance of around 20%, which is on par with devices using spiro-OMeTAD and demonstrates slightly enhanced device stability.

11.
Chem Sci ; 12(24): 8548-8555, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34221336

RESUMO

Due to the low intrinsic hole mobility caused by the orthogonal conformation of two fluorene units in Spiro-OMeTAD which is a classic hole-transporting material (HTM) in perovskite solar cells (PSCs), Spiro-OMeTAD based PSCs generally can only obtain high performances through a sophisticated doping process with dopants/additives, which adds to the cost and complicacy of device fabrication, and also adversely affects the stability of PSC devices. Herein, a novel dispiro-based HTM, WH-1, is designed by cleverly replacing the central carbon atom of Spiro-OMeTAD with cyclohexane, and the spatial configuration of the HTM is changed from vertical orthogonality of the two fluorene units to a parallel arrangement, which is beneficial for the formation of a homogeneous and compact HTM film on the surface of the perovskite film, improvement of intermolecular electronic coupling and intrinsic hole mobility. WH-1 is obtained by two-step facile synthesis with a high yield from commercially available materials. WH-1 is used in PSCs as a dopant-free HTM, which is the first time that the dispiro-based molecule has been applied as a dopant-free HTM, and a power conversion efficiency (PCE) of 19.57% is obtained, rivaling Li-TFSI/t-BP doped Spiro-OMeTAD in PCE (20.29%), and showing obvious superior long-term stability.

12.
ACS Appl Mater Interfaces ; 12(18): 21088-21099, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32252526

RESUMO

Two three-dimensional symmetric tetraphenylbutadiene derivatives decorated with diphenylamine or triphenylamine fragments are first prepared for use as hole-transporting materials (HTMs) in perovskite solar cells (PSCs). The HTMs are acquired using straightforward synthetic methods and facile purification techniques. The thermal stability, photophysical properties, electrochemical behaviors, computational study, hole mobility, X-ray diffraction, hole transfer dynamics, hydrophobicity, surface morphology, and photovoltaic performances of the HTMs are discussed. The highest power conversion efficiency (PCE) of CJ-04-based cell is 13.75%, which is increased to 20.06% when CJ-03 is used as HTM, superior to the PCE of the cell based on 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) (18.90%). The preparation cost of CJ-03 accounts for merely 23.1% of the price of commercial spiro-OMeTAD, while the concentration of CJ-03 solution used in the device fabrication (60.0 mg mL-1) is lower compared with that of the spiro-OMeTAD solution (72.3 mg mL-1). These results corroborate that the screw-like HTMs with a highly distorted configuration are facilely available and promising candidates for PSCs. More importantly, a practical solution is proposed to achieve moderate charge mobility and good film-formation ability of the HTMs simultaneously.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA