Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 210: 108594, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581808

RESUMO

Populus cathayana (C) grafted onto P. deltoides (D) (C/D) can promote growth better than self-grafting (C/C and D/D). However, the mechanisms underlying growth and resistance to drought stress are not clear. In this study, we performed physiological and RNA-seq analysis on the different grafted combinations. It was found that C/D plants exhibited higher growth, net photosynthetic rate, IAA content and intrinsic water use efficiency (WUEi) than C/C and D/D plants under both well-watered and drought-stressed conditions. However, most growth, photosynthetic indices, and IAA content were decreased less in C/D, whereas ABA content, WUEi and root characteristics (e.g., root length, volume, surface area and vitality) were increased more in C/D than in other grafting combinations under drought-stressed conditions. Transcriptomic analysis revealed that the number of differentially expressed genes (DEGs) in leaves of C/D vs C/C (control, 181; drought, 121) was much lower than that in the roots of C/D vs D/D (control, 1639; drought, 1706), indicating that the rootstocks were more responsive to drought resistance. KEGG and GO functional enrichment analysis showed that the enhanced growth and drought resistance of C/D were mainly related to DEGs involved in the pathways of ABA and IAA signaling, and secondary metabolite biosynthesis, especially the pathways for lignin and dopamine synthesis and metabolism. Therefore, our results further demonstrated the dominant role of rootstock in drought resistance, and enriched our knowledge on the mechanism of how interspecific grafting enhanced the growth and drought resistance in poplar.


Assuntos
Secas , Reguladores de Crescimento de Plantas , Populus , Transdução de Sinais , Populus/genética , Populus/metabolismo , Populus/crescimento & desenvolvimento , Populus/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Fotossíntese , Resistência à Seca
2.
Physiol Plant ; 176(1): e14224, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389291

RESUMO

Leaf characteristics can reflect the adaptation of trees to drought stress. However, the effect of leaf maturity on drought stress has been neglected, leading to uncertainty in inferring individual tree responses to drought from leaves. The allocation strategy of photosynthetic carbon between leaf organs (fully expanded young and old leaves) under drought stress remains unclear. Poplar is a diverse and widespread tree species in arid and semi-arid regions. Here, three poplar genotypes (Populus cathayana, P. × euramericana 'Nanlin 895', and P. alba × P. tremula var. glandulosa) were selected and exposed to different watering regimes. The responses and carbon allocation strategies of leaves with different maturity to drought were investigated using a combination of leaf traits and 13 C pulse labelling technique. The results showed that (1) fully expanded young leaves had better osmotic regulation and antioxidant capacity than aged leaves under drought stress. (2) Aged leaves acted as a carbon source during water deficit, where their photosynthetic products were transferred and supplied to upper young leaves to promote stronger photosynthesis in young leaves to acquire resources for tree growth. This study highlights that the effect of leaf maturity should be considered in the future when investigating the effects of drought on woody plants, especially for continuously growing tree species. Therefore, our study not only demonstrates the existence of leaf-age-dependent responses to drought in poplar but also provides new insights into carbon allocation at the leaf level.


Assuntos
Carbono , Populus , Secas , Folhas de Planta/fisiologia , Fotossíntese , Água , Árvores
3.
Chemosphere ; 333: 138902, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37182717

RESUMO

Willows are promising candidates for phytoremediation, but the lead (Pb) phytoremediation potential of different willow ploidy and sex has not yet been exploited. In this study, the Pb uptake, translocation and detoxification capacities of hexaploid and diploid, female and male Salix rehderiana were investigated. The results showed that Pb treatment inhibited biomass accumulation and gas exchange, caused ultrastructural and oxidative damage, and induced antioxidant, phytohormonal and transcriptional regulation in S. rehderiana. Absorbed Pb was mainly accumulated in the roots with restricted root-to-shoot transport. Despite lower biomass, greater transpiration, phytohormonal and transcriptional regulation indicated that hexaploid S. rehderiana had higher tissue Pb concentration, total accumulated Pb amount (4.39 mg, 6.19 mg, 6.60 mg and 10.83 mg in diploid and hexaploid females and males, respectively) as well as bioconcentration factors and translocation factors (0.412, 0.593, 0.921 and 1.320 for bioconcentration factors in roots, and 0.029, 0.032, 0.035 and 0.047 for translocation factors in diploid and hexaploid females and males, respectively) than diploids. Higher soil urease and acid phosphatase activities also favored hexaploids to use more available N and P than diploids in Pb-contaminated soils. Additionally, hexaploid S. rehderiana had stronger antioxidant, phytohormonal and transcriptional responses, and displayed less morphological and ultrastructural damage than diploids after Pb treatment, suggesting that hexaploids have greater Pb uptake, translocation and detoxification capacities than diploids. Moreover, S. rehderiana males had greater Pb uptake and translocation abilities, as well as stronger antioxidant, phytohormonal, and transcriptional regulation mediated Pb detoxification capacities than females. Therefore, hexaploid S. rehderiana are superior to diploids, and males are better than females in Pb phytoremediation. This study provides novel and valuable insights for selecting better willow materials to mitigate Pb contamination.


Assuntos
Salix , Poluentes do Solo , Antioxidantes , Diploide , Chumbo/toxicidade , Poluentes do Solo/análise , Biodegradação Ambiental , Solo , Raízes de Plantas/química
4.
Front Plant Sci ; 14: 1107583, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875570

RESUMO

Long-lived tree species need to cope with changing environments and pathogens during their lifetime. Fungal diseases cause damage to trees growth and forest nurseries. As model system for woody plants, poplars are also hosts of a large variety of fungus. The defense strategies to fungus are generally associated with the type of fungus, therefore, the defense strategies of poplar against necrotrophic and biotrophic fungus are different. Poplars initiate constitutive defenses and induced defenses based on recognition of the fungus, hormone signaling network cascades, activation of defense-related genes and transcription factors and production of phytochemicals. The means of sensing fungus invasion in poplars are similar with herbs, both of which are mediated by receptor proteins and resistance (R) proteins, leading to pattern-triggered immunity (PTI) and effector-triggered immunity (ETI), but poplars have evolved some unique defense mechanisms compared with Arabidopsis due to their longevity. In this paper, current researches on poplar defensive responses to necrotrophic and biotrophic fungus, which mainly include the physiological and genetic aspects, and the role of noncoding RNA (ncRNA) in fungal resistance are reviewed. This review also provides strategies to enhance poplar disease resistance and some new insights into future research directions.

5.
Physiol Plant ; 175(2): e13890, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36917073

RESUMO

Drought is an important stress factor that limits plant growth and development. Female willows generally display stronger drought tolerance than males. The application of exogenous acetic acid (AA) has emerged as an efficient and eco-friendly approach to facilitate drought tolerance in willows. However, whether AA exerts sexually different effects on willows remains undefined. In this study, we comprehensively performed morphological and physiological analyses on three willow species, Salix rehderiana, Salix babylonica, and Salix matsudana, to investigate the sexually different responses to drought and AA. The results indicated that willow females were more drought-tolerant than males. AA application effectively enhanced willows' drought tolerance, and females applied with AA displayed greater root distribution and activity, stronger osmotic and antioxidant capacity and photosynthetic rate but less reactive oxygen species, or abscisic acid-mediated stomatal closure than males. In addition, AA application enhanced the jasmonic acid signaling pathway in females but inhibited it in males, conferring stronger drought defense capacity in female willows than in males. Overall, AA application improves drought tolerance more in female than in male willows, further enlarging the sexual differences in willows under drought-stressed conditions.


Assuntos
Salix , Salix/metabolismo , Resistência à Seca , Ácido Acético/metabolismo , Ácido Acético/farmacologia , Antioxidantes/metabolismo , Secas
6.
Plant Physiol Biochem ; 195: 144-154, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36638604

RESUMO

Nitrogen (N) is an essential nutrient for plant growth and development. Dioecious plants, especially perennial plants, are often faced with a shortage of N supply in nature. Poplar is one of the most important dioecious and perennials species. Due to the different ecological functions, female and male poplars adopt different adaptation strategies to N limitation. However, the regulation in epigenetic mechanism is poorly understood on sexes. Here, the integrative analysis of whole-genome bisulfite sequencing (WGBS), RNA sequencing, and plant physiological analysis on female and male Populus cathayana were performed. We found that N deficiency reprograms methylation in both sexes, and the CG and CHH methylation types played critical roles in female and male poplars, respectively. Induced by DNA methylation, N-deficient males had a stronger phenylpropanoid synthesis pathway and less anthocyanin accumulation than females, which not only strengthened the N cycle but also reduced the defense cost of males. In addition, compared with male poplars, females accumulated more starch to expend excess energy under N limited condition. Additionally, DNA methylation also mediated hormone signalling involved in anthocyanin synthesis and starch metabolism. Therefore, our study reveals new molecular evidences that male poplars are more tolerant to N deficiency than females, which provides a reference for ecological adaptability of forest trees.


Assuntos
Nitrogênio , Populus , Nitrogênio/metabolismo , Metilação de DNA/genética , Populus/metabolismo , Antocianinas/metabolismo , Metabolismo dos Carboidratos
7.
Front Plant Sci ; 13: 1015317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275555

RESUMO

Drought, one of the most severe and complex abiotic stresses, is increasingly occurring due to global climate change and adversely affects plant growth and yield. Grafting is a proven and effective tool to enhance plant drought resistance ability by regulating their physiological and molecular processes. In this review, we have summarized the current understanding, mechanisms, and perspectives of the drought stress resistance of grafted plants. Plants resist drought through adaptive changes in their root, stem, and leaf morphology and structure, stomatal closure modulation to reduce transpiration, activating osmoregulation, enhancing antioxidant systems, and regulating phytohormones and gene expression changes. Additionally, the mRNAs, miRNAs and peptides crossing the grafted healing sites also confer drought resistance. However, the interaction between phytohormones, establishment of the scion-rootstock communication through genetic materials to enhance drought resistance is becoming a hot research topic. Therefore, our review provides not only physiological evidences for selecting drought-resistant rootstocks or scions, but also a clear understanding of the potential molecular effects to enhance drought resistance using grafted plants.

8.
Sci Total Environ ; 844: 157132, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35798115

RESUMO

The adverse effects of drought on plants are gradually exacerbated with global climatic change. Amelioration of the drought stress that is induced by low doses of acetic acid (AA) has been caused great interest in plants. However, whether AA can change soil microbial composition is still unknown. Here, we investigated how exogenous AA regulates the physiology, rhizosphere soil microorganisms and metabolic composition on Salix myrtillacea under drought stress. The physiological results showed that AA could improve the drought tolerance of S. myrtillacea. Azotobacter and Pseudomonas were enriched in the rhizosphere by AA irrigation. AA significantly increased the relative contents of amino acid metabolites (e.g., glycyl-L-tyrosine, l-glutamine and seryl-tryptophan) and decreased the relative contents of phenylpropane metabolites (e.g., fraxetin and sinapyl aldehyde) in soils. The enrichments of Azotobacter and Pseudomonas were significantly correlated with glycyl-L-tyrosine, l-glutamine, seryl-tryptophan, fraxetin and sinapyl aldehyde, which could increase the stress resistance by promoting nitrogen (N) uptake for willows. Furthermore, inoculation with Azotobacter chroococcum and Pseudomonas fluorescens could significantly improve willows drought tolerance. Therefore, our results reveal that the changes of plant physiology, rhizosphere soil microorganisms and metabolic composition induced by AA can improve willows drought resistance by enhancing N uptake.


Assuntos
Rizosfera , Salix , Ácido Acético , Secas , Glutamina , Raízes de Plantas , Plantas , Solo/química , Microbiologia do Solo , Triptofano
9.
Plant Commun ; 3(1): 100266, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35059632

RESUMO

Lysine acetylation (LysAc) is a conserved and important post-translational modification (PTM) that plays a key role in plant physiological and metabolic processes. Based on advances in Lys-acetylated protein immunoenrichment and mass-spectrometric technology, LysAc proteomics studies have been performed in many species. Such studies have made substantial contributions to our understanding of plant LysAc, revealing that Lys-acetylated histones and nonhistones are involved in a broad spectrum of plant cellular processes. Here, we present an extensive overview of recent research on plant Lys-acetylproteomes. We provide in-depth insights into the characteristics of plant LysAc modifications and the mechanisms by which LysAc participates in cellular processes and regulates metabolism and physiology during plant growth and development. First, we summarize the characteristics of LysAc, including the properties of Lys-acetylated sites, the motifs that flank Lys-acetylated lysines, and the dynamic alterations in LysAc among different tissues and developmental stages. We also outline a map of Lys-acetylated proteins in the Calvin-Benson cycle and central carbon metabolism-related pathways. We then introduce some examples of the regulation of plant growth, development, and biotic and abiotic stress responses by LysAc. We discuss the interaction between LysAc and Nα-terminal acetylation and the crosstalk between LysAc and other PTMs, including phosphorylation and succinylation. Finally, we propose recommendations for future studies in the field. We conclude that LysAc of proteins plays an important role in the regulation of the plant life cycle.


Assuntos
Lisina , Proteoma , Acetilação , Lisina/metabolismo , Proteínas de Plantas/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA