Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
1.
Front Immunol ; 15: 1395047, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694500

RESUMO

The emergence of resistance to prostate cancer (PCa) treatment, particularly to androgen deprivation therapy (ADT), has posed a significant challenge in the field of PCa management. Among the therapeutic options for PCa, radiotherapy, chemotherapy, and hormone therapy are commonly used modalities. However, these therapeutic approaches, while inducing apoptosis in tumor cells, may also trigger stress-induced premature senescence (SIPS). Cellular senescence, an entropy-driven transition from an ordered to a disordered state, ultimately leading to cell growth arrest, exhibits a dual role in PCa treatment. On one hand, senescent tumor cells may withdraw from the cell cycle, thereby reducing tumor growth rate and exerting a positive effect on treatment. On the other hand, senescent tumor cells may secrete a plethora of cytokines, growth factors and proteases that can affect neighboring tumor cells, thereby exerting a negative impact on treatment. This review explores how radiotherapy, chemotherapy, and hormone therapy trigger SIPS and the nuanced impact of senescent tumor cells on PCa treatment. Additionally, we aim to identify novel therapeutic strategies to overcome resistance in PCa treatment, thereby enhancing patient outcomes.


Assuntos
Senescência Celular , Resistencia a Medicamentos Antineoplásicos , Neoplasias da Próstata , Humanos , Senescência Celular/efeitos dos fármacos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Neoplasias da Próstata/metabolismo , Animais
2.
J Hazard Mater ; 471: 134309, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38653133

RESUMO

This study addresses antibiotic pollution in global water bodies by integrating machine learning and optimization algorithms to develop a novel reverse synthesis strategy for inorganic catalysts. We meticulously analyzed data from 96 studies, ensuring quality through preprocessing steps. Employing the AdaBoost model, we achieved 90.57% accuracy in classification and an R²value of 0.93 in regression, showcasing strong predictive power. A key innovation is the Sparrow Search Algorithm (SSA), which optimizes catalyst selection and experimental setup tailored to specific antibiotics. Empirical experiments validated SSA's efficacy, with degradation rates of 94% for Levofloxacin and 97% for Norfloxacin, aligning closely with predictions within a 2% margin of error. This research advances theoretical understanding and offers practical applications in material science and environmental engineering, significantly enhancing catalyst design efficiency and accuracy through the fusion of advanced machine learning techniques and optimization algorithms.


Assuntos
Antibacterianos , Cobalto , Aprendizado de Máquina , Óxidos , Poluentes Químicos da Água , Cobalto/química , Catálise , Antibacterianos/química , Poluentes Químicos da Água/química , Óxidos/química , Levofloxacino/química , Norfloxacino/química , Algoritmos
3.
Cancer Lett ; 592: 216906, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38649108

RESUMO

Bone metastasis (BM) is a frequent complication associated with advanced cancer that significantly increases patient mortality. Myeloid-derived suppressor cells (MDSCs) play a pivotal role in BM progression by promoting angiogenesis, inhibiting immune responses, and inducing osteoclastogenesis. MDSCs induce immunosuppression through diverse mechanisms, including the generation of reactive oxygen species, nitric oxide, and immunosuppressive cytokines. Within the bone metastasis niche (BMN), MDSCs engage in intricate interactions with tumor, stromal, and bone cells, thereby establishing a complex regulatory network. The biological activities and functions of MDSCs are regulated by the microenvironment within BMN. Conversely, MDSCs actively contribute to microenvironmental regulation, thereby promoting BM development. A comprehensive understanding of the indispensable role played by MDSCs in BM is imperative for the development of novel therapeutic strategies. This review highlights the involvement of MDSCs in BM development, their regulatory mechanisms, and their potential as viable therapeutic targets.

4.
Exp Hematol Oncol ; 13(1): 47, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664743

RESUMO

Enhanced cellular therapy has emerged as a novel concept following the basis of cellular therapy. This treatment modality applied drugs or biotechnology to directly enhance or genetically modify cells to enhance the efficacy of adoptive cellular therapy (ACT). Drugs or biotechnology that enhance the killing ability of immune cells include immune checkpoint inhibitors (ICIs) / antibody drugs, small molecule inhibitors, immunomodulatory factors, proteolysis targeting chimera (PROTAC), oncolytic virus (OV), etc. Firstly, overcoming the inhibitory tumor microenvironment (TME) can enhance the efficacy of ACT, which can be achieved by blocking the immune checkpoint. Secondly, cytokines or cytokine receptors can be expressed by genetic engineering or added directly to adoptive cells to enhance the migration and infiltration of adoptive cells to tumor cells. Moreover, multi-antigen chimeric antigen receptors (CARs) can be designed to enhance the specific recognition of tumor cell-related antigens, and OVs can also stimulate antigen release. In addition to inserting suicide genes into adoptive cells, PROTAC technology can be used as a safety switch or degradation agent of immunosuppressive factors to enhance the safety and efficacy of adoptive cells. This article comprehensively summarizes the mechanism, current situation, and clinical application of enhanced cellular therapy, describing potential improvements to adoptive cellular therapy.

5.
J Colloid Interface Sci ; 667: 282-290, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38640648

RESUMO

Se-based cathodes have caught tremendous attention owing to their comparable volumetric capacity and better electronic conductivity to S cathodes. However, its low utilization ratio and sluggish redox kinetics due to the high reaction barrier of solid-phase transformation from Se to Li2Se limit its practical application. Herein, an in-situ texturing hollow carbon host by gas-solid interface reaction anchored with Fe single-atomic catalyst is designed and prepared for advanced Li-Se batteries. This Se host presents high pore volume of 1.49 cm3 g-1, Fe single atom content of 1.53 wt%, and its specific structure protects single-atomic catalyst from the destructive reaction environment, thus balancing catalytic activity and durability. After Se loading by reduction of H2SeO3, this homogenous Se-based cathode delivers a superior rate capacity of 431.3 mA h g-1 at 4C, and great discharge capacity of 301.8 mA h g-1 after 1000 cycles at 10C, with high Li-ion diffusion coefficient and capacitance-contributed ratio. The distribution of relaxation times analysis verifies solid-phase transformation mechanism of this cathode and density functional theory calculations confirm the adsorption and bidirectionally catalysis effect of Fe single-atomic catalyst. This work provides a new strategy to prepare high-efficient Se cathode associated with non-noble metal single atoms for high-performance Li-Se batteries.

6.
Int J Surg ; 110(5): 2992-3007, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38445538

RESUMO

BACKGROUND: Image-guided surgery (IGS) refers to surgery navigated by medical imaging technology, helping doctors better clarify tumor boundaries, identify metastatic lymph nodes and preserve surrounding healthy tissue function. Recent studies have provided expectable momentum of the application of IGS in prostate cancer (PCa). The authors aim to comprehensively construct a bibliometric analysis of the application of IGS in PCa. METHOD: The authors searched publications related to application of IGS in PCa from 2013 to 2023 on the web of science core collection (WoSCC) databases. VOSviewer, CiteSpace, and R package 'bibliometrix' were used for bibliometric analysis. RESULTS: Two thousand three eighty-nine articles from 75 countries and 2883 institutions led by the United States were included. The number of publications related to the application of IGS in PCa kept high in the last decade. Johns Hopkins University is the top research institutions. Journal of Nuclear Medicine has the highest popularity as the selection of journal and co-cited journal. Pomper Martin G. had published the most paper. Ali Afshar-Oromieh was co-cited most frequently. The clinical efficacy of PSMA-PET/CT in PCa diagnosis and treatment are main topics in this research field, with emerging focuses on the use of fluorescence imaging guidance technology in PCa. 'PSMA' and 'PET/CT' are the main keywords as long-term research hotspots. CONCLUSION: This study is the first bibliometric analysis of researches on application of IGS in PCa with three recognized bibliometric software, providing an objective description and comprehensive guidance for the future relevant investigations.


Assuntos
Bibliometria , Neoplasias da Próstata , Cirurgia Assistida por Computador , Humanos , Masculino , Neoplasias da Próstata/cirurgia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Cirurgia Assistida por Computador/métodos , Prostatectomia/métodos , Prostatectomia/estatística & dados numéricos
8.
PLoS One ; 19(2): e0286120, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422025

RESUMO

Modern healthcare has a sharp focus on data aggregation and processing technologies. Consequently, from a data perspective, a patient may be regarded as a timestamped list of medical conditions and their corresponding corrective interventions. Technologies to securely aggregate and access data for individual patients in the quest for precision medicine have led to the adoption of Digital Twins in healthcare. Digital Twins are used in manufacturing and engineering to produce digital models of physical objects that capture the essence of device operation to enable and drive optimization. Thus, a patient's Digital Twin can significantly improve health data sharing. However, creating the Digital Twin from multiple data sources, such as the patient's electronic medical records (EMR) and personal health records (PHR) from wearable devices, presents some risks to the security of the model and the patient. The constituent data for the Digital Twin should be accessible only with permission from relevant entities and thus requires authentication, privacy, and provable provenance. This paper proposes a blockchain-secure patient Digital Twin that relies on smart contracts to automate the updating and communication processes that maintain the Digital Twin. The smart contracts govern the response the Digital Twin provides when queried, based on policies created for each patient. We highlight four research points: access control, interaction, privacy, and security of the Digital Twin and we evaluate the Digital Twin in terms of latency in the network, smart contract execution times, and data storage costs.


Assuntos
Blockchain , Registros de Saúde Pessoal , Humanos , Atenção à Saúde , Privacidade , Registros Eletrônicos de Saúde
9.
Photochem Photobiol Sci ; 23(3): 575-585, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38386257

RESUMO

Our main focus is to explore the atomic electronegativity-dependent photoinduced behavior of styryl derivatives (HBO, HBS, and HBSe). The results of structural parameter calculation by the DFT method show that the intramolecular hydrogen bonds of normal and tautomer form are strengthened and weakened, respectively, in an excited state (S1), which is conducive to the excited intramolecular proton transfer (ESIPT) process. The enhancement of excited hydrogen bond is beneficial to the ESIPT process from the aspects of infrared vibration frequency (IR), Mulliken's charge analysis, and density gradient reduction (RDG). Additionally, by determining the bond energy with the band critical point (BCP) parameter, we found that the lower the electronegativity of the atom, the larger the hydrogen bond strength at the excited state and the more likely ESIPT reaction occurs. Meanwhile, the intramolecular H-bonds O-H…N in HBO, HBS, and HBSe are enhanced with the weakened electron-withdrawing capacity of the atom (from O to S and Se). Subsequently, frontier molecular orbital (FMOs) and charge density difference (CDD) analyses essentially revealed that electron redistribution induces the ESIPT process. Low atomic electronegativity exhibits the high chemical activity of the excited state. Furthermore, to demonstrate the electronegativity-dependent ESIPT behavior of the system, we built potential energy curves (PECs) and located the transition states (TS) of proton transfer processes.

10.
IEEE Trans Biomed Eng ; 71(3): 780-791, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37738180

RESUMO

OBJECTIVE: The pharmacokinetic (PK) parameters estimated from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) provide valuable information for clinical research and diagnosis. However, these estimated PK parameters suffer from many sources of variability. Thus, the estimation of the posterior distributions of these PK parameters could provide a way to simultaneously quantify the values and uncertainties of the PK parameters. Our objective is to develop an efficient and flexible method to more closely approximate and estimate the underlying posterior distributions of the PK parameters. METHODS: The normalizing flow model-based parameters distribution estimation neural network (FPDEN) is proposed to adaptively learn and estimate the posterior distributions of the PK parameters. The maximum likelihood estimation (MLE) loss is directly constructed based on the parameter distributions learned by the normalizing flow model, rather than pre-defined distributions. RESULTS: Experimental analysis shows that the proposed method can improve parameter estimation accuracy. Moreover, the uncertainty derived from the parameter distribution constitutes an effective indicator to exclude unreliable parametric results. A successful demonstration is the improved classification performance of the glioma World Health Organization (WHO) grading task, specifically in terms of distinguishing between low and high grades, as well as between Grade III and Grade IV. CONCLUSION: The FPDEN method offers improved accuracy for estimation of PK parameters and boosts the performance of the glioma grading task. SIGNIFICANCE: By enhancing the precision and reliability of DCE-MRI, the proposed method promotes its further applications in clinical practice.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Meios de Contraste , Reprodutibilidade dos Testes , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/patologia
11.
Lancet ; 403(10423): 249-260, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38048786

RESUMO

BACKGROUND: Unmet medical needs remain in patients with red blood cell transfusion-dependent (RBC-TD) lower-risk myelodysplastic syndromes (LR-MDS) who are not responding to or are ineligible for erythropoiesis-stimulating agents (ESAs). Imetelstat, a competitive telomerase inhibitor, showed promising results in a phase 2 trial. We aimed to compare the RBC transfusion independence (RBC-TI) rate with imetelstat versus placebo in patients with RBC-TD LR-MDS. METHODS: In phase 3 of IMerge, a double-blind, placebo-controlled trial conducted in 118 sites including university hospitals, cancer centres, and outpatient clinics in 17 countries, patients (aged ≥18 years) with ESA-relapsed, ESA-refractory, or ESA-ineligible LR-MDS (low or intermediate-1 risk disease as per International Prognostic Scoring System [IPSS] criteria) were randomly assigned via a computer-generated schedule (2:1) to receive imetelstat 7·5 mg/kg or placebo, administered as a 2-h intravenous infusion, every 4 weeks until disease progression, unacceptable toxic effects, or withdrawal of consent. Randomisation was stratified by previous RBC transfusion burden and IPSS risk group. Patients, investigators, and those analysing the data were masked to group assignment. The primary endpoint was 8-week RBC-TI, defined as the proportion of patients without RBC transfusions for at least 8 consecutive weeks starting on the day of randomisation until subsequent anti-cancer therapy, if any. Primary efficacy analyses were performed in the intention-to-treat population, and safety analyses were conducted in patients who received at least one dose of trial medication or placebo. This trial is registered with ClinicalTrials.gov (NCT02598661; substudy active and recruiting). FINDINGS: Between Sept 11, 2019, and Oct 13, 2021, 178 patients were enrolled and randomly assigned (118 to imetelstat and 60 to placebo). 111 (62%) were male and 67 (38%) were female. 91 (77%) of 118 patients had discontinued treatment by data cutoff in the imetelstat group versus 45 (75%) in the placebo group; a further one patient in the placebo group did not receive treatment. Median follow-up was 19·5 months (IQR 12·0-23·4) in the imetelstat group and 17·5 months (12·1-22·7) in the placebo group. In the imetelstat group, 47 (40% [95% CI 30·9-49·3]) patients had an RBC-TI of at least 8 weeks versus nine (15% [7·1-26·6]) in the placebo group (rate difference 25% [9·9 to 36·9]; p=0·0008). Overall, 107 (91%) of 118 patients receiving imetelstat and 28 (47%) of 59 patients receiving placebo had grade 3-4 treatment-emergent adverse events. The most common treatment-emergent grade 3-4 adverse events in patients taking imetelstat were neutropenia (80 [68%] patients who received imetelstat vs two [3%] who received placebo) and thrombocytopenia (73 [62%] vs five [8%]). No treatment-related deaths were reported. INTERPRETATION: Imetelstat offers a novel mechanism of action with durable transfusion independence (approximately 1 year) and disease-modifying activity for heavily transfused patients with LR-MDS who are not responding to or are ineligible for ESAs. FUNDING: Janssen Research & Development before April 18, 2019, and Geron Corporation thereafter.


Assuntos
Síndromes Mielodisplásicas , Oligonucleotídeos , Trombocitopenia , Humanos , Masculino , Feminino , Adolescente , Adulto , Resultado do Tratamento , Eritropoese , Síndromes Mielodisplásicas/tratamento farmacológico , Trombocitopenia/tratamento farmacológico , Método Duplo-Cego , Protocolos de Quimioterapia Combinada Antineoplásica
12.
Dig Dis ; 42(1): 53-60, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37820605

RESUMO

BACKGROUND: Chronic hepatitis B (CHB) infection is still a major global public health problem, with nearly two billion patients. Although current antiviral drugs can inhibit viral replication and reduce hepatitis B virus (HBV) related complications, it is difficult to achieve clinical endpoints due to drug resistance. SUMMARY: Immune checkpoint inhibitors (ICIs) are an important strategy to reverse T-cell exhaustion, and rebuilding an effective functional T-cell response is a promising immunomodulatory approach for CHB patients. However, ICIs may lead to viral reactivation or immune-related adverse effects. There are still many controversies in the application of ICIs in treating patients with CHB. KEY MESSAGES: This article reviews the research progress of ICIs in CHB infection and related issues. The goal of this paper was to summarize the possible impact of new therapies for CHB with the aim of reducing potential clinical risks.


Assuntos
Hepatite B Crônica , Hepatite B , Humanos , Hepatite B Crônica/tratamento farmacológico , Inibidores de Checkpoint Imunológico/efeitos adversos , Receptor de Morte Celular Programada 1/uso terapêutico , Vírus da Hepatite B/fisiologia , Linfócitos T CD8-Positivos , Antivirais/uso terapêutico , Antivirais/farmacologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-38109247

RESUMO

Predicting accurately the mechanisms of drug-drug interaction (DDI) events is crucial in drug research and development. Existing methods used to predict these events are primarily based on deep learning and have achieved satisfactory results. However, they rarely consider the presence of redundant co-information between the multimodal data of a drug and the need for consistency in the predicted features of each drug modality. Herein, we propose a new method for drug interaction event prediction based on multimodal mutual orthogonal projection and intermodal consistency loss. Our method obtains the features of each modality through a multimodal mutual orthogonal projection module, which eliminates redundant common information with other modalities. In addition, we use the consistency loss between modalities and make the predicted features of each modality more similar. In comparative experiments, our proposed method achieves a prediction accuracy of 0.9500, and an area under the precision-recall (AUPR) curve is 0.9833 for known DDIs. This method outperforms existing methods. The results show that the proposed method is capable of accurately predicting DDIs. The source code is available at https://github.com/xiaqixiaqi/MOPDDI.

16.
Biomed Pharmacother ; 168: 115806, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37925933

RESUMO

Androgen receptor (AR) signaling is essential in prostate cancer treatment. For many years, androgen deprivation therapy (ADT) has been primarily applied to manage advanced prostate cancer. However, most individuals with metastatic hormone-sensitive prostate cancer (mHSPC) administered ADT alone are at risk of developing metastatic castration-resistant prostate cancer (mCRPC) in less than two years. New approaches employing novel AR inhibitors (ARi) as intensified upfront systemic treatment in mHSPC have recently demonstrated substantial benefits in delaying disease progression and prolonging overall survival. Administration of novel ARi has become the new standard of care in mHSPC. The new landscape simultaneously makes treatment choice more challenging. This review provides comprehensive data on molecular structure, pharmaceutical properties, and efficacy and safety profiles reported by pivotal clinical trials. We also discuss future directions with ongoing Phase III trials of novel ARi in mHSPC. Considering these biological and clinical insights, this review aimed to provide a comprehensive understanding of differences in the development and applications of novel ARi for mHSPC, which may be helpful in designing strategies for first-line treatment choices.


Assuntos
Antagonistas de Receptores de Andrógenos , Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Humanos , Masculino , Antagonistas de Receptores de Andrógenos/farmacologia , Antagonistas de Receptores de Andrógenos/uso terapêutico , Hormônios , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos , Resultado do Tratamento
17.
Sci Rep ; 13(1): 17911, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863886

RESUMO

Pyroptosis is a type of programmed cell death and plays a dual role in distinct cancers. It is elusive to evaluate the activation level of pyroptosis and to appraise the involvement of pyroptosis in the occurrence and development of diverse tumors. Accordingly, we herein established an indicator to evaluate pyroptosis related gene transcription levels based on the expression level of genes involved in pyroptosis and tried to elaborated on the association between pyroptosis and tumors across diverse tumor types. We found that pyroptosis related gene transcription levels could predict the prognosis of patients, which could act as either a favorable or a dreadful factor in diverse cancers. According to signaling pathway analyses we observed that pyroptosis played a significant role in immune regulation and tumorigenesis and had strong links with other forms of cell death. We also performed analysis on the crosstalk between pyroptosis and immune status and further investigated the predictive potential of pyroptosis level for the efficacy of immunotherapy. Lastly, we manifested that pyroptosis status could serve as a biomarker to the efficacy of chemotherapy across various cancers. In summary, this study established a quantitative indicator to evaluate pyroptosis related gene transcription levels, systematically explored the role of pyroptosis in pan-cancer. These results could provide potential research directions targeting pyroptosis, and highlighted that pyroptosis may be used to develop a novel strategy for the treatment of cancer.


Assuntos
Neoplasias , Piroptose , Humanos , Piroptose/genética , Neoplasias/genética , Carcinogênese , Morte Celular , Transcrição Gênica , Microambiente Tumoral
18.
Genes Environ ; 45(1): 26, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864262

RESUMO

OBJECTIVE: The aim of this study was to assess the correlation of spouse selection with short tandem repeats (STRs) in DNA and with the number of fingertip lunulae to investigate the role of heredity in spouse selection. METHODS: We randomly selected a total of 286 couples (husband and wife) as a couple group while 200 paired subjects (a man randomly matched with a woman as a pair of subjects) were selected as a non-spouse group for DNA typing, and to investigate lunulae in spouse selection, a total of 554 couples were selected as a couple group and 500 pairs of subjects were selected as a control group. RESULTS: A significant difference of STR matching number (a large value implies a higher genetic similarity) between spouse group and non-spouse group were observed (12.3 ± 2.7 vs. 11.8 ± 2.6; p < 0.05). A significant difference of the lunula matching number (difference of lunula counts between a paired subjects, a lower value implies a higher genetic similarity) between two groups were also observed for the lunula counts (1.55 ± 1.88 vs. 3.53 ± 2.40; p < 0.01). CONCLUSION: Significant and unprecedented relationships were found between the couples and polymorphic STRs, and between spouse selection and lunula counts. Polymorphic STRs and fingertip lunulae counts provide an initial insight into the potentially important contributions that genetic characteristics may play a key role in spouse selection.

19.
Opt Lett ; 48(20): 5281-5284, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37831847

RESUMO

Accurately lateral displacement measurement is essential for a vast of non-contact sensing technologies. Here, we introduce a high-precision lateral displacement measurement method based on differential wavefront sensing (DWS). Compared to the conventional differential power sensing (DPS) method, the DWS method based on phase readout has the potential to achieve a higher resolution. The beam lateral displacement can be obtained by the curvature distribution of the wavefront on the surface of the detector. According to the theoretical model of the DWS method, the sensitivity of the lateral displacement can be greatly improved by increasing the wavefront curvature of the measured laser beam by means of lenses. An optical system for measuring the lateral displacement of the laser beam is built and calibrated by a high-precision hexapod. The experimental results show that the DWS-based lateral displacement measurement achieves a resolution of 40 pm/Hz1/2 (at 1-10 Hz) with a linear range of about 40 µm, which is consistent with the theoretical model. This technique can be applied to high-precision multi-degree-of-freedom interferometers.

20.
Int J Mol Sci ; 24(17)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37686409

RESUMO

SUMOylation is an important part of post-translational protein modifications and regulates thousands of proteins in a dynamic manner. The dysregulation of SUMOylation is detected in many cancers. However, the comprehensive role of SUMOylation in prostate cancer (PCa) remains unclear. Using 174 SUMOylation-related genes (SRGs) from the MigDSB database and the transcript data of PCa from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), we constructed a SUMOylation-related risk score and correlated it with prognosis, tumor mutation burden (TMB), tumor microenvironment (TME) infiltration, and response to chemotherapy and immunotherapy. Moreover, we validated two vital SRGs by RT-qPCR, western blotting, and immunohistochemistry. Two vital SRGs (DNMT3B and NUP210) were finally selected. The risk score based on these genes exhibited excellent predictive efficacy in predicting the biochemical recurrence (BCR) of PCa. A nomogram involving the risk score and T stage was established to further explore the clinical value of the risk score. We found the high-score group was correlated with worse prognosis, higher TMB, a more suppressive immune microenvironment, and a better response to Docetaxel but worse to PD-1/CTLA-4 blockade. Meanwhile, we validated the significantly higher expression level of NUP210 in PCa at mRNA and protein levels. This study elucidated the comprehensive role of SUMOylation-related genes in PCa. Importantly, we highlighted the role of an important SRG, NUP210, in PCa, which might be a promising target in PCa treatment. A better understanding of SUMOylation and utilizing the SUMOylation risk score could aid in precision medicine and improve the prognosis of PCa.


Assuntos
Neoplasias da Próstata , Sumoilação , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Próstata , Imunoterapia , Medicina de Precisão , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA