Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Chem Res Toxicol ; 36(2): 243-250, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36705520

RESUMO

1,2-Unsaturated pyrrolizidine alkaloids (PAs) are carcinogenic phytochemicals. We previously determined that carcinogenic PAs and PA N-oxides commonly form a set of four (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-DNA adducts, namely, DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4. This set of DHP-DNA adducts has been implicated as a potential biomarker of PA-induced liver tumor initiation from metabolism of individual carcinogenic PAs. To date, it is not known whether this generality occurs from metabolism of PA-containing plant extracts. In this study, we investigate the rat liver microsomal metabolism of nine PA-containing plant extracts and two PA-containing dietary supplements in the presence of calf thymus DNA. The presence of carcinogenic PAs and PA N-oxides in plant extracts was first confirmed by LC-MS/MS analysis with selected reaction monitoring mode. Upon rat liver microsomal metabolism of these PA-containing plant extracts and dietary supplements, the formation of this set of DHP-DNA adducts was confirmed. Thus, these results indicate that metabolism of PA-containing plant extracts and dietary supplements can generate DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4 adducts, thereby potentially initiating liver tumor formation.


Assuntos
Neoplasias Hepáticas , Alcaloides de Pirrolizidina , Ratos , Animais , Alcaloides de Pirrolizidina/metabolismo , Adutos de DNA , Extratos Vegetais/metabolismo , Cromatografia Líquida , Ratos Endogâmicos F344 , Espectrometria de Massas em Tandem , Carcinógenos/metabolismo , Suplementos Nutricionais/análise , Óxidos
2.
Toxins (Basel) ; 14(6)2022 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-35737038

RESUMO

Pyrrolizidine alkaloids (PAs) have been found in over 6000 plants worldwide and represent the most common hepatotoxic phytotoxins. Catalyzed by hepatic cytochrome P450 enzymes, PAs are metabolized into reactive pyrrolic metabolites, which can alkylate cellular proteins and DNA to form pyrrole-protein adducts and pyrrole-DNA adducts, leading to cytotoxicity, genotoxicity, and tumorigenicity. To date, the correlation between these PA-derived pyrrole-protein and pyrrole-DNA adducts has not been well investigated. Retrorsine is a representative hepatotoxic and carcinogenic PA. In the present study, the correlations among the PA-derived liver DNA adducts, liver protein adducts, and serum protein adducts in retrorsine-treated mice under different dosage regimens were studied. The results showed positive correlations among these adducts, in which serum pyrrole-protein adducts were more accessible and present in higher abundance, and thus could be used as a suitable surrogate biomarker for pyrrole-DNA adducts to indicate the genetic or carcinogenic risk posed by retrorsine.


Assuntos
Adutos de DNA , Alcaloides de Pirrolizidina , Animais , Carcinógenos/metabolismo , DNA/metabolismo , Adutos de DNA/metabolismo , Adutos de DNA/farmacologia , Fígado , Masculino , Camundongos , Camundongos Endogâmicos ICR , Proteínas/metabolismo , Pirróis/toxicidade , Alcaloides de Pirrolizidina/toxicidade
3.
Front Pharmacol ; 13: 850859, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370657

RESUMO

Misuse of pyrrolizidine alkaloid (PA)-containing plants or consumption of PA-contaminated foodstuffs causes numerous poisoning cases in humans yearly, while effective therapeutic strategies are still limited. PA-induced liver injury was initiated by cytochrome P450 (CYP)-mediated metabolic activation and subsequent formation of adducts with cellular proteins. Liquorice, a hepato-protective herbal medicine, is commonly used concurrently with PA-containing herbs in many compound traditional Chinese medicine formulas, and no PA-poisoning cases have been reported with this combination. The present study aimed to investigate hepato-protective effects of liquorice aqueous extract (EX) and 18ß-glycyrrhetinic acid (GA, the primary bioactive constituent of liquorice) against PA-induced hepatotoxicity and the underlying mechanism. Histopathological and biochemical analysis demonstrated that both single- and multiple-treatment of EX (500 mg/kg) or GA (50 mg/kg) significantly attenuated liver damage caused by retrorsine (RTS, a representative hepatotoxic PA). The formation of pyrrole-protein adducts was significantly reduced by single- (30.3% reduction in liver; 50.8% reduction in plasma) and multiple- (32.5% reduction in liver; 56.5% reduction in plasma) treatment of GA in rats. Single- and multiple-treatment of EX also decreased the formation of pyrrole-protein adducts, with 30.2 and 31.1% reduction in rat liver and 51.8 and 53.1% reduction in rat plasma, respectively. In addition, in vitro metabolism assay with rat liver microsomes demonstrated that GA reduced the formation of metabolic activation-derived pyrrole-glutathione conjugate in a dose-dependent manner with the estimated IC50 value of 5.07 µM. Further mechanism study showed that GA inhibited activities of CYPs, especially CYP3A1, the major CYP isoform responsible for the metabolic activation of RTS in rats. Enzymatic kinetic study revealed a competitive inhibition of rat CYP3A1 by GA. In conclusion, our findings demonstrated that both EX and GA exhibited significant hepato-protective effects against RTS-induced hepatotoxicity, mainly through the competitive inhibition of CYP-mediated metabolic activation of RTS.

4.
Arch Toxicol ; 95(10): 3191-3204, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34390356

RESUMO

Pyrrolizidine alkaloids (PAs) have been found in over 6000 plants worldwide and represent the most common hepatotoxic phytotoxins. Currently, a definitive diagnostic method for PA-induced liver injury (PA-ILI) is lacking. In the present study, using a newly developed analytical method, we identified four pyrrole-amino acid adducts (PAAAs), namely pyrrole-7-cysteine, pyrrole-9-cysteine, pyrrole-9-histidine, and pyrrole-7-acetylcysteine, which are generated from reactive pyrrolic metabolites of PAs, in the urine of PA-treated male Sprague Dawley rats and PA-ILI patients. The elimination profiles, abundance, and persistence of PAAAs were systematically investigated first in PA-treated rat models via oral administration of retrorsine at a single dose of 40 mg/kg and multiple doses of 5 mg/kg/day for 14 consecutive days, confirming that these urinary excreted PAAAs were derived specifically from PA exposure. Moreover, we determined that these PAAAs were detected in ~ 82% (129/158) of urine samples collected from ~ 91% (58/64) of PA-ILI patients with pyrrole-7-cysteine and pyrrole-9-histidine detectable in urine samples collected at 3 months or longer times after hospital admission, indicating adequate persistence time for use as a clinical test. As direct evidence of PA exposure, we propose that PAAAs can be used as a biomarker of PA exposure and the measurement of urinary PAAAs could be used as a non-invasive test assisting the definitive diagnosis of PA-ILI in patients.


Assuntos
Aminoácidos/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Pirróis/metabolismo , Alcaloides de Pirrolizidina/toxicidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Alcaloides de Pirrolizidina/administração & dosagem , Alcaloides de Pirrolizidina/farmacocinética , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
6.
Hepatology ; 74(1): 264-280, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33462832

RESUMO

BACKGROUND AND AIMS: Mutational signature analyses are an effective tool in identifying cancer etiology. Humans are frequently exposed to pyrrolizidine alkaloids (PAs), the most common carcinogenic phytotoxins widely distributed in herbal remedies and foods. However, due to the lack of human epidemiological data, PAs are classified as group II hepatocarcinogens by the World Health Organization. This study identified a PA mutational signature as the biomarker to investigate the association of PA exposure with human liver cancer. APPROACH AND RESULTS: Pyrrole-protein adducts (PPAs), the PA exposure biomarker, were measured and found in 32% of surgically resected specimens from 34 patients with liver cancer in Hong Kong. Next, we delineated the mode of mutagenic and tumorigenic actions of retrorsine, a representative PA, in mice and human hepatocytes (HepaRG). Retrorsine induced DNA adduction, DNA damage, and activation of tumorigenic hepatic progenitor cells, which initiated hepatocarcinogenesis. PA mutational signature, as the unique molecular fingerprint of PA-induced mutation, was derived from exome mutations in retrorsine-exposed mice and HepaRG cells. Notably, PA mutational signature was validated in genomes of patients with PPA-positive liver cancer but not patients with PPA-negative liver cancer, confirming the specificity of this biomarker in revealing PA-associated liver cancers. Furthermore, we examined the established PA mutational signature in 1,513 liver cancer genomes and found that PA-associated liver cancers were potentially prevalent in Asia (Mainland China [48%], Hong Kong [44%], Japan [22%], South Korea [6%], Southeast Asia [25%]) but minor in Western countries (North America [3%] and Europe [5%]). CONCLUSIONS: This study provides a clinical indication of PA-associated liver cancer. We discovered an unexpectedly extensive implication of PA exposure in patients with liver cancer, laying the scientific basis for precautionary approaches and prevention of PA-associated human liver cancers.


Assuntos
Carcinogênese/induzido quimicamente , Dano ao DNA/efeitos dos fármacos , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas/induzido quimicamente , Alcaloides de Pirrolizidina/efeitos adversos , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Análise Mutacional de DNA , Feminino , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Masculino , Camundongos , Sequenciamento do Exoma
7.
Artigo em Inglês | MEDLINE | ID: mdl-35895950

RESUMO

We recently established a genotoxic mechanism mediated by a set of (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-DNA adducts, which lead to pyrrolizidine alkaloid (PA)-induced liver tumor initiation. This mechanism is involved in the metabolism of a series of carcinogenic PAs and PA N-oxides in rats in vivo and in vitro. There is a correlation between the order of liver tumor potency and the level of DHP-DNA adduct formation. Thus, these DHP-DNA adducts can be potential biomarkers of PA and PA N-oxide exposure and liver tumor initiation. To establish the generality of this mechanism, in the present study, we examined the metabolism of 13 potential carcinogenic PAs, 1 non-carcinogenic PA, and 5 PA N-oxides by male rat primary hepatocytes. With the exception of the nontoxic PA and vehicle control, all treated groups produced identical set of DHP-DNA adducts. These results support a general genotoxic mechanism mediated by the formation of characteristic DHP-DNA adducts leading to PA-induced liver tumor initiation.

8.
Chem Res Toxicol ; 33(8): 2139-2146, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32588618

RESUMO

1-Formyl-7-hydroxy-6,7-dihydro-5H-pyrrolizine (1-CHO-DHP) is a potential proximate carcinogenic metabolite of pyrrolizidine alkaloids. In the present study, we determined that the reaction of 1-CHO-DHP with cysteine generated four identified products. By mass and 1H NMR spectral analyses, these products are cysteinyl-[2'-S-7]-1-CHO-DHP (P2), cysteinyl-[3'-N-7]-1-CHO-DHP (P3), 7-keto-DHP (P4), and 1-cysteinylimino-DHP (P5). These four compounds were also formed from the incubation of 1-CHO-DHP in HepG2 cells. Compounds P3 and P5 were interconvertible in acetonitrile and water. Incubation of P2 in HepG2 cells generated the four DHP-dG and -dA adducts that we propose to be potential common biomarkers of pyrrolizidine alkaloids exposure and pyrrolizidine alkaloids-induced liver tumor initiation. These four DHP-DNA adducts were also formed from the incubation of a mixture of P3 and P5 in HepG2 cells but not from the incubation with 7-keto-DHP. From the reaction of 1-CHO-DHP with glutathione, only trace amounts of the glutathione-1-CHO-DHP adduct were detected, with the structure unable to be characterized.


Assuntos
Cisteína/metabolismo , DNA/metabolismo , Hepatócitos/metabolismo , Alcaloides de Pirrolizidina/metabolismo , Animais , Sítios de Ligação , Cisteína/química , DNA/química , Células Hep G2 , Hepatócitos/química , Humanos , Masculino , Estrutura Molecular , Alcaloides de Pirrolizidina/química , Ratos
9.
Artigo em Inglês | MEDLINE | ID: mdl-32500832

RESUMO

Pyrrolizidine alkaloids (PAs) are hepatotoxic, genotoxic, and carcinogenic phytochemicals. Upon metabolic activation, PAs produce dehydropyrrolizidine alkaloids (dehydro-PAs) as reactive primary pyrrolic metabolites. Dehydro-PAs are unstable, facilely hydrolyzed to (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP). Both dehydro-PAs and DHP are capable of binding to cellular DNA and proteins to form DHP-DNA and DHP-protein adducts leading to tumorigenicity and cytotoxicity. We recently determined that the reaction of dehydro-PAs with glutathione and cysteine generated 7-glutathione-DHP (7-GS-DHP) and 7-cysteine-DHP, respectively which can also bind to DNA to produce DHP-DNA adducts. In this study, we determined the effects of glutathione and cysteine on the induction of hepatocytotoxicity and the formation of DHP-DNA adducts in primary hepatocytes cultured with riddelliine and monocrotaline. We found that both glutathione and cysteine can drastically reduce hepatotoxicity while the levels of DHP-DNA adduct formation are slightly affected.


Assuntos
Cisteína/metabolismo , Glutationa/metabolismo , Alcaloides de Pirrolizidina/toxicidade , Animais , Carcinógenos , Cromatografia Líquida de Alta Pressão , Cisteína/análogos & derivados , Glutationa/análogos & derivados , Masculino , Microssomos Hepáticos , Monocrotalina , Ratos , Espectrometria de Massas em Tandem
10.
J Food Drug Anal ; 28(1): 167-174, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31883605

RESUMO

Pyrrolizidine alkaloids (PAs) are carcinogenic phytochemicals, inducing liver tumors in experimental rodents. We previously determined that (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP), 7-glutathione-DHP, 7-cysteine-DHP, 7-N-acetylcysteine-DHP, and 1-CHO-DHP are DNA reactive pyrrolic metabolites potentially associated with PA-induced liver tumor initiation. In this study, we developed an LC/MS/MS multiple reaction monitoring (MRM) mode method to identify and quantify these metabolites formed from the metabolism of senecionine, a carcinogenic PA, by mouse, rat, and human liver microsomes, and primary rat hepatocytes. Together with the chemically prepared standards of these metabolites, this represents an accurate and convenient LC/MS/MS analytical method for quantifying these five reactive pyrrolic metabolites in biological systems.


Assuntos
Carcinógenos/análise , Alcaloides de Pirrolizidina/análise , Animais , Células Cultivadas , Cromatografia Líquida , DNA , Adutos de DNA , Hepatócitos/efeitos dos fármacos , Humanos , Camundongos , Microssomos Hepáticos/efeitos dos fármacos , Pirróis , Ratos , Espectrometria de Massas em Tandem
11.
Chem Res Toxicol ; 32(6): 1193-1203, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31120748

RESUMO

Pyrrolizidine alkaloids (PAs) are phytochemicals present in more than 6000 plant species worldwide; about half of the PAs are hepatotoxic, genotoxic, and carcinogenic. Because of their wide exposure and carcinogenicity, the International Programme on Chemical Safety (IPCS) concluded that PAs are a threat to human health and safety. We recently determined that PA-induced liver tumor initiation is mediated by a set of four (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5 H-pyrrolizine (DHP)-DNA adducts and proposed that these DHP-DNA adducts are biomarkers of PA exposure and liver tumor initiation. To validate the generality of this metabolic activation pathway and DHP-DNA adducts as biomarkers, it is significant to identify reactive metabolites associated with this metabolic activation pathway. Segall et al. ( Segall et al. ( 1984 ) Drug Metab. Dispos. 12 , 68 - 71 ) previously reported that 1-formyl-7-hydroxy-6,7-dihydro-5 H-pyrrolizine (1-CHO-DHP) is generated from the metabolism of senecionine by mouse liver microsomes. In the present study, we examined the metabolism of seven hepatocarcinogenic PAs (senecionine, intermedine, retrorsine, riddelliine, DHR, heliotrine, and senkirkine) and one noncarcinogenic PA (platyphylline) by human, rat, and mouse liver microsomes. 1-CHO-DHP was identified as a common metabolite from the metabolism of these hepatotoxic PAs, but not from platyphylline. Incubation of 1-CHO-DHP with HepG2 and A549 cells produced the same set of DHP-DNA adducts, which were identified by both LC/MS MRM mode and selected ion monitoring analyses through comparison to synthetic standards. In the incubation medium of 1-CHO-DHP treated HepG2 cells, both DHP and 7-cysteine-DHP were formed, which were capable of binding to cellular DNA to produce DHP-DNA adducts. These results suggest that 1-CHO-DHP is a proximate DNA metabolite of genotoxic and carcinogenic PAs.


Assuntos
Carcinógenos/farmacologia , Alcaloides de Pirrolizidina/química , Alcaloides de Pirrolizidina/metabolismo , Células A549 , Animais , Carcinógenos/síntese química , Carcinógenos/química , Adutos de DNA/efeitos dos fármacos , Adutos de DNA/metabolismo , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Ratos , Ratos Endogâmicos F344 , Células Tumorais Cultivadas
12.
Toxicol In Vitro ; 54: 286-294, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30366057

RESUMO

Humans and animals can be exposed to carcinogenic pyrrolizidine alkaloids (PAs) through consumption of plants commonly found in many parts of the world. Although the liver is the primary target organ for carcinogenic PAs, they have also induced lung tumors in rodents. Hepatic cytochrome P450 activity converts PAs into dehydro-PAs that can be hydrolyzed to dehydropyrrolizidine (DHP); these reactive pyrrolic metabolites can produce four characteristic DNA adducts associated with PA-induced liver tumor initiation in laboratory animals. We reported recently that these four DNA adducts are also formed when 7-glutathione-DHP (7-GS-DHP) or 7-cysteine-DHP is incubated with calf thymus DNA. Here we showed that the four characteristic DNA adducts were formed when human A549 brochoalveolar carcinoma cells were treated with three dehydro-PAs (dehydroriddelliine, dehydromonocrotaline, or dehydroretronecine) or with 7-GS-DHP or 7-cysteine-DHP. For comparison, two parent PAs (riddelliine and monocrotaline) and 7,9-di-glutathionine-DHP were studied. No DHP-DNA adducts were detected with these incubations, confirming that A549 lung carcinoma cells do not express cytochrome P450 enzymes required for metabolic activation of PAs. Our results show that primary and secondary pyrrolic metabolites of carcinogenic PAs produce characteristic DHP-containing DNA adducts in A549 lung cancer cells, suggesting that they are DNA reactive metabolites.


Assuntos
Adutos de DNA , Pirróis/toxicidade , Alcaloides de Pirrolizidina/toxicidade , Células A549 , Humanos
13.
J Food Drug Anal ; 26(3): 965-972, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29976414

RESUMO

Pyrrolizidine alkaloids (PAs) are phytotoxins identified in over 6000 plant species worldwide. Approximately 600 toxic PAs and PA N-oxides have been identified in about 3% flowering plants. PAs can cause toxicities in different organs particularly in the liver. The metabolic activation of PAs is catalyzed by hepatic cytochrome P450 and generates reactive pyrrolic metabolites that bind to cellular proteins to form pyrrole-protein adducts leading to PA-induced hepatotoxicity. The mechanisms that pyrrole-protein adducts induce toxicities have not been fully characterized. Methods for qualitative and quantitative detection of pyrrole-protein adducts have been developed and applied for the clinical diagnosis of PA exposure and PA-induced liver injury. This mini-review addresses the mechanisms of PA-induced hepatotoxicity mediated by pyrrole-protein adducts, the analytical methods for the detection of pyrrole-protein adducts, and the development of pyrrole-protein adducts as the mechanism-based biomarker of PA exposure and PA-induced hepatotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/etiologia , Proteínas/química , Pirróis/química , Alcaloides de Pirrolizidina/toxicidade , Animais , Biomarcadores/química , Biomarcadores/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Proteínas/metabolismo , Pirróis/metabolismo , Alcaloides de Pirrolizidina/química , Alcaloides de Pirrolizidina/metabolismo
14.
Chem Res Toxicol ; 31(7): 619-628, 2018 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-29855181

RESUMO

Pyrrolizidine alkaloids (PAs) and their N-oxide derivatives are hepatotoxic, genotoxic, and carcinogenic phytochemicals. PAs induce liver tumors through a general genotoxic mechanism mediated by a set of four (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5 H-pyrrolizine (DHP)-derived DNA adducts. To date, the primary pyrrolic metabolites dehydro-PAs, their hydrolyzed metabolite DHP, and two secondary pyrrolic metabolites 7-glutathione-DHP (7-GS-DHP) and 7-cysteine-DHP are the known metabolites that can generate these DHP-DNA adducts in vivo and/or in PA-treated cells. Secondary pyrrolic metabolites are formed from the reaction of dehydro-PAs with glutathione, amino acids, and proteins. In this investigation, we determined whether or not more secondary pyrrolic metabolites can bind to calf thymus DNA and to cellular DNA in HepG2 cells resulting in the formation of DHP-DNA adducts using a series of secondary pyrrolic metabolites (including 7-methoxy-DHP, 9-ethoxy-DHP, 9-valine-DHP, 7-GS-DHP, 7-cysteine-DHP, and 7,9-diglutathione-DHP) and synthetic pyrroles for study. We found that (i) many secondary pyrrolic metabolites are DNA reactive and can form DHP-DNA adducts and (ii) multiple activation pathways are involved in producing DHP-DNA adducts associated with PA-induced liver tumor initiation. These results suggest that secondary pyrrolic metabolites play a vital role in the initiation of PA-induced liver tumors.


Assuntos
Carcinógenos/química , Adutos de DNA/metabolismo , Alcaloides de Pirrolizidina/química , Animais , Carcinógenos/metabolismo , Bovinos , Cromatografia Líquida de Alta Pressão , DNA/química , Adutos de DNA/análise , Glutationa/química , Células Hep G2 , Humanos , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/patologia , Microssomos Hepáticos/metabolismo , Monocrotalina/análogos & derivados , Monocrotalina/química , Alcaloides de Pirrolizidina/metabolismo , Espectrometria de Massas em Tandem , Valina/química
15.
J Agric Food Chem ; 65(45): 9893-9901, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29058433

RESUMO

Although nanosized ingredients, including TiO2 nanoparticles (NPs), can be found in a wide range of consumer products, little is known about the effects these particles have on other active compounds in product matrices. These NPs can interact with reactive oxygen species (ROS), potentially disrupting or canceling the benefits expected from antioxidants. We used electron spin resonance spectrometry to assess changes in the antioxidant capacities of six dietary antioxidants (ascorbic acid, α-tocopherol, glutathione, cysteine, epicatechin, and epicatechin gallate) during exposure to P25 TiO2 and/or simulated sunlight. Specifically, we determined the ability of these antioxidants to scavenge 1-diphenyl-2-picryl-hydrazyl radical, superoxide radical, and hydroxyl radical. Exposure to simulated sunlight alone did not lead to noticeable changes in radical-scavenging abilities; however, in combination with P25 TiO2 NPs, the scavenging abilities of most antioxidants were weakened. We found glutathione to be the most resistant to treatment with sunlight and NPs among these six antioxidants.


Assuntos
Sequestradores de Radicais Livres/química , Radicais Livres/química , Nanopartículas/química , Titânio/química , Sequestradores de Radicais Livres/efeitos da radiação , Nanopartículas/efeitos da radiação , Luz Solar , Titânio/efeitos da radiação
16.
J Food Drug Anal ; 25(4): 984-991, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28987376

RESUMO

There are 660 pyrrolizidine alkaloids (PAs) and PA N-oxides present in the plants, with approximately half being possible carcinogens. We previously reported that a set of four PA-derived DNA adducts is formed in the liver of rats administered a series of hepatocarcinogenic PAs and a PA N-oxide. Based on our findings, we hypothesized that this set of DNA adducts is a common biological biomarker of PA-induced liver tumor formation. In this study, we determined that rat liver microsomal metabolism of five hepatocarcinogenic PAs (lasiocarpine, retrorsine, riddelliine, monocrotaline, and heliotrine) and their corresponding PA N-oxides produced the same set of DNA adducts. Among these compounds, lasiocarpine N-oxide, retrorsine N-oxide, monocrotaline N-oxide, and heliotrine N-oxide are for first time shown to be able to produce these DNA adducts. These results further support the role of these DNA adducts as potential common biomarkers of PA-induced liver tumor initiation.


Assuntos
Biomarcadores/metabolismo , Adutos de DNA/metabolismo , Alcaloides de Pirrolizidina/toxicidade , Animais , Bovinos , DNA , Adutos de DNA/química , Adutos de DNA/genética , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Alcaloides de Pirrolizidina/química , Ratos Endogâmicos F344
17.
Artigo em Inglês | MEDLINE | ID: mdl-28418776

RESUMO

Many pyrrolizidine alkaloids (PAs) are hepatotoxic, genotoxic, and carcinogenic phytochemicals. Metabolism of PAs in vivo generates four (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-DNA adducts that have been proposed to be responsible for PA-induced liver tumor formation in rats. In this present study, we determined that the same set of DHP-DNA adducts was formed upon the incubation of 7-glutathione-DHP and 7-cysteine-DHP with cultured human hepatocarcinoma HepG2 cells. These results suggest that 7-glutathione-DHP and 7-cysteine-DHP are reactive metabolites of PAs that can bind to cellular DNA to form DHP-DNA adducts in HepG2 cells, and can potentially initiate liver tumor formation.


Assuntos
Carcinógenos/toxicidade , Cisteína/análogos & derivados , Glutationa/análogos & derivados , Pirróis/toxicidade , Alcaloides de Pirrolizidina/toxicidade , Animais , Cisteína/metabolismo , Cisteína/toxicidade , Adutos de DNA , Glutationa/metabolismo , Glutationa/toxicidade , Alcaloides de Pirrolizidina/metabolismo , Ratos , Ratos Endogâmicos F344
18.
Chem Res Toxicol ; 30(3): 851-858, 2017 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28125883

RESUMO

Pyrrolizidine alkaloids are among the most common poisonous plants affecting livestock, wildlife, and humans. Exposure of humans and livestock to toxic pyrrolizidine alkaloids through the intake of contaminated food and feed may result in poisoning, leading to devastating epidemics. During February 2014, 73 mixed breed female beef cows from the Galilee region of Israel were accidently fed pyrrolizidine alkaloid contaminated hay for 42 days, resulting in the sudden death of 24 cows over a period of 63 days. The remaining cows were slaughtered 2.5 months after the last ingestion of the contaminated hay. In this study, we report the histopathological analysis of the livers from five of the slaughtered cows and quantitation of pyrrolizidine alkaloid-derived DNA adducts from their livers and three livers of control cows fed with feed free of weeds producing pyrrolizidine alkaloids. Histopathological examination revealed that the five cows suffered from varying degrees of bile duct proliferation, fibrosis, and megalocytosis. Selected reaction monitoring HPLC-ES-MS/MS analysis indicated that (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-derived DNA adducts were formed in all five livers. The livers from the three control cows did not have any liver damage nor any indication of DHP-DNA adduct formed. These results confirm that the toxicity observed in these cattle was caused by pyrrolizidine alkaloid poisoning and that pyrrolizidine alkaloid-derived DNA adducts could still be detected and quantified in the livers of the chronically poisoned cows 2.5 months after their last exposure to the contaminated feed, suggesting that DHP-derived DNA adducts can serve as biomarkers for pyrrolizidine alkaloid exposure and poisoning.


Assuntos
Adutos de DNA/química , Heliotropium/fisiologia , Fígado/química , Plantas Tóxicas/toxicidade , Alcaloides de Pirrolizidina/química , Animais , Bovinos , Cromatografia Líquida , Fígado/patologia , Espectrometria de Massas em Tandem
19.
Arch Toxicol ; 91(2): 949-965, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27125825

RESUMO

Pyrrolizidine alkaloid (PA)-containing plants are widespread in the world and the most common poisonous plants affecting livestock, wildlife, and humans. Our previous studies demonstrated that PA-derived DNA adducts can potentially be a common biological biomarker of PA-induced liver tumor formation. In order to validate the use of these PA-derived DNA adducts as a biomarker, it is necessary to understand the basic kinetics of the PA-derived DNA adducts formed in vivo. In this study, we studied the dose-dependent response and kinetics of PA-derived DNA adduct formation and removal in male ICR mice orally administered with a single dose (40 mg/kg) or multiple doses (10 mg/kg/day) of retrorsine, a representative carcinogenic PA. In the single-dose exposure, the PA-derived DNA adducts exhibited dose-dependent linearity and persisted for up to 4 weeks. The removal of the adducts following a single-dose exposure to retrorsine was biphasic with half-lives of 9 h (t 1/2α) and 301 h (~12.5 days, t 1/2ß). In the 8-week multiple exposure study, a marked accumulation of PA-derived DNA adducts without attaining a steady state was observed. The removal of adducts after the multiple exposure also demonstrated a biphasic pattern but with much extended half-lives of 176 h (~7.33 days, t 1/2α) and 1736 h (~72.3 days, t 1/2ß). The lifetime of PA-derived DNA adducts was more than 8 weeks following the multiple-dose treatment. The significant persistence of PA-derived DNA adducts in vivo supports their role in serving as a biomarker of PA exposure.


Assuntos
Adutos de DNA/metabolismo , Alcaloides de Pirrolizidina/toxicidade , Administração Oral , Animais , Relação Dose-Resposta a Droga , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos Endogâmicos ICR , Alcaloides de Pirrolizidina/administração & dosagem
20.
Chem Res Toxicol ; 29(8): 1282-92, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27388689

RESUMO

Pyrrolizidine alkaloids (PAs) are phytochemicals present in hundreds of plant species from different families widely distributed in many geographical regions around the world. PA-containing plants are probably the most common type of poisonous plants affecting livestock, wildlife, and humans. There have been many large-scale human poisonings caused by the consumption of food contaminated with toxic PAs. PAs require metabolic activation to generate pyrrolic metabolites to exert their toxicity. In this study, we developed a novel method to quantify pyrrole-protein adducts present in the blood. This method involves the use of AgNO3 in acidic ethanol to cleave the thiol linkage of pyrrole-protein (DHP-protein) adducts, and the resulting 7,9-di-C2H5O-DHP is quantified by HPLC-ES-MS/MS multiple reaction monitoring analysis in the presence of a known quantity of isotopically labeled 7,9-di-C2D5O-DHP internal standard. Using this method, we determined that diester-type PAs administered to rats produced higher levels of DHP-protein adducts than other types of PAs. The results suggest that DHP-protein adducts can potentially serve as minimally invasive biomarkers of PA exposure.


Assuntos
Biomarcadores/metabolismo , Fígado/efeitos dos fármacos , Proteínas/química , Alcaloides de Pirrolizidina/toxicidade , Animais , Cromatografia Líquida de Alta Pressão , Feminino , Ratos , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA