Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 75(10): 2951-2964, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38426564

RESUMO

Vessel traits contribute to plant water transport from roots to leaves and thereby influence how plants respond to soil water availability, but the sources of variation in fine root anatomical traits remain poorly understood. Here, we explore the variations of fine root vessel traits along topological orders within and across tropical tree species. Anatomical traits were measured along five root topological orders in 80 individual trees of 20 species from a tropical forest in southwestern China. We found large variations for most root anatomical traits across topological orders, and strong co-variations between vessel traits. Within species, theoretical specific xylem hydraulic conductivity (Kth) increased with topological order due to increased mean vessel diameter, size heterogeneity, and decreased vessel density. Across species, Kth was associated with vessel fraction in low-order roots and correlated with mean vessel diameter and vessel density in high-order roots, suggesting a shift in relative anatomical contributors to Kth from the second- to fifth-order roots. We found no clear relationship between Kth and stele: root diameter ratios. Our study shows strong variations in root vessel traits across topological orders and species, and highlights shifts in the anatomical underpinnings by varying vessel-related anatomical structures for an optimized water supply.


Assuntos
Raízes de Plantas , Árvores , Xilema , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/fisiologia , Árvores/fisiologia , Árvores/anatomia & histologia , Xilema/fisiologia , Xilema/anatomia & histologia , Água/metabolismo , Água/fisiologia , Clima Tropical , China
2.
Int Microbiol ; 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38158469

RESUMO

BACKGROUND: Plukenetia volubilis Linneo is an oleaginous plant belonging to the family Euphorbiaceae. Due to its seeds containing a high content of edible oil and rich in vitamins, P. volubilis is cultivated as an economical plant worldwide. However, the cultivation and growth of P. volubilis is challenged by phytopathogen invasion leading to production loss. METHODS: In the current study, we tested the pathogenicity of fungal pathogens isolated from root rot infected P. volubilis plant tissues by inoculating them into healthy P. volubilis seedlings. Metagenomic sequencing was used to assess the shift in the fungal community of P. volubilis rhizosphere soil after root rot infection. RESULTS: Four Fusarium isolates and two Rhizopus isolates were found to be root rot causative agents of P. volubilis as they induced typical root rot symptoms in healthy seedlings. The metagenomic sequencing data showed that root rot infection altered the rhizosphere fungal community. In root rot infected soil, the richness and diversity indices increased or decreased depending on pathogens. The four most abundant phyla across all samples were Ascomycota, Glomeromycota, Basidiomycota, and Mortierellomycota. In infected soil, the relative abundance of each phylum increased or decreased depending on the pathogen and functional taxonomic classification. CONCLUSIONS: Based on our results, we concluded that Fusarium and Rhizopus species cause root rot infection of P. volubilis. In root rot infected P. volubilis, the shift in the rhizosphere fungal community was pathogen-dependent. These findings may serve as a key point for a future study on the biocontrol of root rot of P. volubilis.

3.
Mol Ecol ; 32(23): 6294-6303, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35770463

RESUMO

To understand soil biodiversity we need to know how soil communities are assembled. However, the relationship between soil community assembly and environmental factors, and the linkages between soil microbiota taxonomic groups and their body sizes, remain unexplored in tropical seasonal rainforests. Systematic and stratified random sampling was used to collect 243 soil and organism samples across a 20-ha plot in a tropical seasonal rainforest in southwestern China. High-throughput sequencing, variation analysis and principal coordinates of neighbourhood matrices were performed. Soil community composition, spatial distribution and assembly processes based on propagule size (including archaea, bacteria, fungi and nematodes) were investigated. The results showed that: (i) the community assembly of small soil microorganisms (bacteria, fungi) was mostly influenced by stochastic processes while that of larger soil organisms (nematodes) was more deterministic; (ii) the independent effects of habitat (including soil and topographic variables) and its interaction with plant attributes for community structure significantly decreased with increasing body size; and (iii) plant leaf phosphorus directly influenced the spatial distribution of soil-available phosphorus, which indicates their indirect impact on the assembly of the soil communities. Our data suggest that the assembly of multitrophic soil communities can be explained to some extent by changes in above-ground plant attributes. This highlights the importance of above- and below-ground linkages in influencing multitrophic soil microbiota community assembly.


Assuntos
Microbiota , Floresta Úmida , Solo/química , Estações do Ano , Plantas/microbiologia , Biodiversidade , Microbiota/genética , Bactérias/genética , Fungos/genética , Tamanho Corporal , Microbiologia do Solo , Fósforo
4.
iScience ; 25(12): 105538, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36425767

RESUMO

Our understanding of broad-scale biodiversity and functional trait patterns is largely based on plants, and relatively little information is available on soil arthropods. Here, we investigated the distribution of termite diversity globally and morphological traits and diversity across China. Our analyses showed increasing termite species richness with decreasing latitude at both the globally, and within-China. In addition, we detected obvious latitudinal trends in the mean community value of termite morphological traits on average, with body size and leg length decreasing with increasing latitude. Furthermore, temperature, NDVI and water variables were the most important drivers controlling the variation in termite richness, and temperature and soil properties were key drivers of the geographic distribution of termite morphological traits. Our global termite richness map is one of the first high resolution maps for any arthropod group and especially given the functional importance of termites, our work provides a useful baseline for further ecological analysis.

5.
Sci Total Environ ; 843: 157072, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35780872

RESUMO

To explore the thermal behavior and hazard during the spontaneous combustion fires (SCFs) of coal and coal gangue (CG), the characteristics of heat release and thermal transfer during the SCFs of coal and CG were tested. The results indicate that coal contains more combustibles and aromatic hydrocarbons, while CG possesses higher contents of ash and inorganic silicate. Coal has a stronger heat release capacity, while CG owns a smaller specific heat capacity, a larger thermal diffusivity and a greater thermal conductivity. Thus, CG performs better with respect to heat transfer. The apparent activation energy of coal is larger in the endothermic stage, whereas that of CG is more notable in the exothermic stage. Based on heat release and heat transfer performance, hazardous zones during the SCFs of coal and CG were identified, and the combustion growth index was established to quantify the hazard of SCF disasters. The results show that the hazard is determined by both heat release and thermal transfer capacities. Coal or CG with a combustible component of 31.3 %, which not only releases massive heat but also transfers heat quickly, corresponds to the most considerable hazard of SCF disasters.


Assuntos
Incêndios , Combustão Espontânea , Carvão Mineral
6.
Sci Total Environ ; 842: 156863, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35750182

RESUMO

The concept of microbial functional genes has added a new dimension to microbial ecology research by improving the model of microbial community-ecosystem functions relationship. However, our knowledge vis-à-vis fine-scale spatial distribution pattern of functional genes and their probable impact on plant community in the hyper-diverse tropical forest ecosystem is very limited. Here, we investigated the spatial pattern of functional genes abundance (NirK, AOA, AOB, and PhoD), identified key influencing factors, and distinguished the key functional group supporting the plant community in a tropical rainforest located in Xishuangbanna. In total, 200 soil samples and vegetation data of ~4800 individuals of plants across a 1 ha study area were collected. Our results detected higher spatial variability with a maximum magnitude of abundance for PhoD gene (4.53 × 107 copies) followed by NirK (2.71 × 106 copies), AOA (1.97 × 106 copies), and AOB (7.38 × 104 copies). A strong spatial dependence was observed for PhoD and NirK over the distance of 17 and 18 m, respectively. Interestingly, the N:P stoichiometry played a critical role in structuring the spatial pattern of the most abundant PhoD gene. The significant positive and negative relationship of PhoD with N:P ratio and available phosphorus, respectively, indicated that the P-limiting environment was a driving factor for recruitment of PhoD gene community. The structural equation modeling ascertained the direct positive impact of PhoD on plant biomass and high demand of available P by plants suggesting that the organic phosphorus mineralization process is essential to maintain plant productivity by re-establishing the availability of the most limiting P nutrient. Our preliminary study improves our understanding of how microbial functional genes-environment associations could be used for monitoring soil health and its overall impact on ecosystem multifunctionality. Finally, we intend to conduct the study at a large spatial scale for achieving a holistic view.


Assuntos
Microbiota , Microbiologia do Solo , Bactérias/genética , China , Ecossistema , Florestas , Humanos , Fósforo/análise , Solo/química
7.
Conserv Biol ; 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35288993

RESUMO

Extremely old trees have important roles in providing insights about historical climatic events and supporting cultural values. Yet there has been limited work on the global distribution and conservation of these trees. We extracted information on 197,855 tree cores at 4,854 sites, and combined it with other tree age data from a further 156 sites, to determine the age of the world's oldest trees and quantify the factors influencing their global distribution. We found that extremely old trees >1,000 years are rare. Among 30 individual trees that exceeded 2,000 years old, 27 occurred in high mountains. Our model suggests that many of the existing oldest trees occur in high-elevation, cold and arid mountains with limited human disturbance. This pattern is markedly different from that of the tallest trees, which are more likely to occur in more mesic and productive locations. Global warming and expansion of human activities may induce rapid population declines of extremely old trees. New strategies, including targeted establishment of conservation reserves in remote regions, especially those in western Table 1 parts of China and USA, are required to protect these trees. This article is protected by copyright. All rights reserved.

8.
J Hazard Mater ; 429: 128295, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35074747

RESUMO

Tropical forest contributes to > 50% of global litterfall mercury (Hg) inputs and surface soil Hg storage, while with limited understanding of Hg biogeochemical processes. In this study, we displayed the 5-m resolution of Hg spatial distribution in three 1-ha tropical forest plots across the latitudinal gradient in Southwest China, and determined Hg isotopic signatures to understand factors driving Hg spatial distribution and sequestration processes. Our results show that tropical forest at the lowest latitude has the highest litterfall Hg input (74.95 versus 34.14-56.59 µg m-2 yr-1 at higher latitude plots), but the smallest surface soil Hg concentration (2-3 times smaller than at higher latitude sites). Hg isotopic evidence indicates that the decreasing climate mediated microbial Hg reduction in forest floor leads to the increasing Hg accumulation along the latitudinal gradient in three tropical forests. The terrain induced indirect effects by influencing litterfall Hg inputs, soil organic matters distribution and interplays between surface and deep soils drive the heterogeneity of surface soil Hg distribution within each sampling plot. Our results highlight though the elevated litterfall Hg inputs, the distinct post-depositional reductions induced Hg loss would remarkedly decrease atmospheric Hg net sink in tropical forest.


Assuntos
Mercúrio , China , Monitoramento Ambiental , Mercúrio/análise , Solo
9.
PLoS Biol ; 19(9): e3001391, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34582437

RESUMO

Cooperation is ubiquitous in the animal kingdom as it aims to maximize benefits through joint action. Selection, however, may also favor competitive behaviors that could violate cooperation. How animals mitigate competition is hotly debated, with particular interest in primates and little attention paid thus far to nonprimates. Using a loose-string pulling apparatus, we explored cooperative and competitive behavior, as well as mitigation of the latter, in semi-wild Asian elephants (Elephas maximus). Our results showed that elephants first maintained a very high cooperation rate (average = 80.8% across 45 sessions). Elephants applied "block," "fight back," "leave," "move side," and "submission" as mitigation strategies and adjusted these strategies according to their affiliation and rank difference with competition initiators. They usually applied a "fight back" mitigation strategy as a sanction when competition initiators were low ranking or when they had a close affiliation, but were submissive if the initiators were high ranking or when they were not closely affiliated. However, when the food reward was limited, the costly competitive behaviors ("monopoly" and "fight") increased significantly, leading to a rapid breakdown in cooperation. The instability of elephant cooperation as a result of benefit reduction mirrors that of human society, suggesting that similar fundamental principles may underlie the evolution of cooperation across species.


Assuntos
Comportamento Competitivo , Comportamento Cooperativo , Elefantes/psicologia , Animais , Comportamento Animal , Feminino , Masculino , Recompensa , Predomínio Social
10.
J Hazard Mater ; 403: 123840, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33264921

RESUMO

The integration of nanotechnology for efficient pest management is gaining momentum to overcome the challenges and drawbacks of traditional approaches. However, studies pertaining to termite pest control using biosynthesized nanoparticles are seldom. The present study aims to highlight the following key points: a) green synthesis of AgNPs using Glochidion eriocarpum and their activity against wood-feeding termites, b) testing the hypothesis that AgNPs diminish digestive enzymes in termite gut through in silico analysis. The green synthesis route generated spherical PsAgNPs in the size range of 4-44.5 nm exhibiting higher thermal stability with minimal weight loss at 700 °C. The choice and no-choice bioassays confirmed strong repellent (80.97%) and antifeedant activity of PsAgNPs. Moreover, PsAgNPs exposure caused visible morphological changes in termites. Molecular docking simulation indicated possible attenuation of endoglucanase and bacteria-origin xylanase, digestive enzymes from termite gut, through partial blocking of the catalytic site by AgNPs. Altogether, our preliminary study suggests promising potentials of PsAgNPs for pest management in forestry and agriculture sectors to prevent damages to living trees, wood, crops, etc. As sustainable pest management practices demand low risk to the environment and biodiversity therefore, we recommend that more extensive studies should be performed to elucidate the environmental compatibility of PsAgNPs.


Assuntos
Isópteros , Animais , Bactérias , Simulação de Acoplamento Molecular , Árvores , Madeira
11.
Ying Yong Sheng Tai Xue Bao ; 31(3): 761-768, 2020 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-32537970

RESUMO

A high-throughput sequencing approach was used to differentiate the nematode communities in the humus and soil surface layer (0-10 cm) in 20 hm2 plot located in the cold temperate coniferous and broadleaved mixed forest of Yulong Snow Mountain Nature Reserve, Lijiang, Yunnan. A total of 5744582 sequences were obtained, which were further annotated to 44 nematode families. In the humus layer, 37 families were recorded, with Tylenchidae (18.1%) being the most dominant family. For trophic groups, bacterivorous, fungivorous and herbivorous were predominant. The soil surface layer had 41 families, with Mononchidae (45.4%) being the most dominant family. The relative abundance of predatory nematode was highest in the soil surface layer. There was no significant difference in the α diversity indices (Shannon, Simpson and Chao1 index) of nematode communities at the OTU level between two habitats. At the family level, however, α diversity of nematode community in the humus layer was significantly lower than in soil surface layer. ß diversity of the nematode community was significantly different in the two habitats, with lower Cody index but high Sorensen non-similarity index in the humus habitat. Results of non-metric multidimensional scaling (NMDS) analysis showed that the internal structure difference of nematode community in the soil surface layer was higher than that in the humus layer.


Assuntos
Nematoides , Traqueófitas , Animais , China , Florestas , Neve , Solo
12.
Appl Plant Sci ; 7(4): e01241, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31024784

RESUMO

PREMISE OF THE STUDY: The relationship between tree species abundance and diversity and soil chemistry has been studied in several ecosystems and at different spatial scales. However, species-specific assessments have mainly been conducted in temperate ecosystems and in monospecific settings, calling for studies from diverse, mixed forests from different ecosystems. METHODS: In a subtropical forest in southern China, under four dominant tree canopy species (Lithocarpus chintungensis, Castanopsis wattii, Schima noronhae, and Manglietia insignis), we assessed species' effect on inter- and intraspecific percentages of litter mass loss, and the effect of species on soil nutrients and soil microbial biomass. RESULTS: Our results show significant differences in litter decomposition for all four species; however, the percentage of litter mass loss was stable under different species. Microbial biomass and soil nutrients presented strong differences under different tree species. Species-specific differences in soil characteristics were seen for carbon-nitrogen-phosphorus relationships. Surprisingly, the correlations between carbon and phosphorus and between nitrogen and phosphorus showed opposite slopes in soils collected under different tree species. DISCUSSION: Our results provide insights into the importance of tree species identity in providing variety to ecosystem processes occurring on the forest floor. We recommend this methodological approach-combining analysis of litter decomposition, soil nutrient concentrations, and microbial biomass-when dealing with species-rich forests.

13.
Ann Bot ; 122(7): 1103-1116, 2018 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-29846521

RESUMO

Background and Aims: Root mechanical traits, including tensile strength (Tr), tensile strain (εr) and modulus of elasticity (Er), are key functional traits that help characterize plant anchorage and the physical contribution of vegetation to landslides and erosion. The variability in these traits is high among tree fine roots and is poorly understood. Here, we explore the variation in root mechanical traits as well as their underlying links with morphological (diameter), architectural (topological order) and anatomical (stele and cortex sizes) traits. Methods: We investigated the four tropical tree species Pometia tomentosa, Barringtonia fusicarpa, Baccaurea ramiflora and Pittosporopsis kerrii in Xishuangbanna, Yunnan, China. For each species, we excavated intact, fresh, fine roots and measured mechanical and anatomical traits for each branching order. Key Results: Mechanical traits varied enormously among the four species within a narrow range of diameters (<2 mm): <0.1-65 MPa for Tr, 4-1135 MPa for Er and 0.4-37 % for εr. Across species, Tr and Er were strongly correlated with stele area ratio, which was also better correlated with topological order than with root diameter, especially at interspecific levels. Conclusions: Root topological order plays an important role in explaining variability in fine-root mechanical traits due to its reflection of root tissue development. Accounting for topological order when measuring fine-root traits therefore leads to greater empirical understanding of plant functions (e.g. anchorage) within and across species.


Assuntos
Magnoliopsida/fisiologia , Raízes de Plantas/fisiologia , Árvores/fisiologia , Barringtonia/anatomia & histologia , Barringtonia/fisiologia , Fenômenos Biomecânicos , China , Magnoliopsida/anatomia & histologia , Raízes de Plantas/anatomia & histologia , Sapindaceae/anatomia & histologia , Sapindaceae/fisiologia , Árvores/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA