Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Physiol Biochem ; 80(2): 465-477, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38526704

RESUMO

Hypothermia is an essential environmental factor in gastrointestinal diseases, but the main molecular mechanisms of pathogenesis remain unclear. The current study sought to better understand how chronic cold stress affects gut damage and its underlying mechanisms. In this work, to establish chronic cold stress (CS)-induced intestinal injury model, mice were subjected to continuous cold exposure (4 °C) for 3 h per day for 3 weeks. Our results indicated that CS led to gut injury via inducing changes of heat shock proteins 70 (HSP70) and apoptosis-related (caspases-3, Bax and Bcl-2) proteins; enhancing expression of intestinal tight-related (ZO-1 and occludin) proteins; promoting releases of inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), high mobility group box 1 (HMGB1), interleukin1ß (IL-1ß), IL-18 and IL-6 inflammatory mediators in the ileum; and altering gut microbial diversity. Furthermore, persistent cold exposure resulted in the cleavage of pyroptosis-related Gasdermin D (GSDMD) protein by regulating the NLRP3/ASC/caspase-1 and caspase-11 pathway, and activation of toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)-mediated nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, which are strongly associated with changes in gut microbiota diversity. Taken together, these investigations provide new insights into the increased risk of intestinal disorders at extremely low temperatures and establish a theoretical foundation for the advancement of novel pharmaceutical interventions targeting cold-related ailments.


Assuntos
Gasderminas , Microbioma Gastrointestinal , Piroptose , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Resposta ao Choque Frio , Proteínas de Ligação a Fosfato/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Íleo/metabolismo , Íleo/microbiologia , Íleo/patologia , Inflamação/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
2.
J Agric Food Chem ; 72(5): 2741-2755, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38284775

RESUMO

Aflatoxin B1 (AFB1) is one of the most harmful and toxic mycotoxins in foods and feeds, posing a serious health risk to both humans and animals, especially its hepatotoxicity. Nuclear factor-erythroid 2-related factor 2 (Nrf2), an important nuclear transcription factor, is generally recognized as a potential target for phytochemicals to ameliorate liver injury. The current study sought to elucidate the molecular processes by which licochalcone A (Lico A), a compound derived from Xinjiang licorice Glycyrrhiza inflate, protects against AFB1 toxicity. In vivo, male wild-type (WT) and Nrf2 knockout (Nrf2-/-) C57BL/6 mice were orally administered AFB1 at 1.5 mg/kg body weight (BW) with or without Lico A at 5 mg/kg. In vitro, AML12 cells were utilized to evaluate the protective effect and mechanism of Lico A against the AFB1-induced hepatotoxicity. Our findings demonstrated that AFB1 caused severe hepatotoxicity, while Lico A treatment successfully relieved the toxicity. Meanwhile, Lico A effectively improved liver injury, inflammatory mediators, oxidative insults, apoptosis, liver fibrosis, and pyroptosis, which contributed to the inhibition of toll receptor 4 (TLR4)-NF-κB/MAPK and NOD-like receptors protein 3 (NLRP3)/caspase-1/GSDMD signaling pathway activation. Furthermore, Lico A was able to enhance the Nrf2 antioxidant signaling pathway. Intriguingly, Lico A still had a protective effect on AFB1-caused liver injury in mice via the inhibition of inflammation and pyroptosis, while apoptosis and liver fibrosis were blocked in the absence of Nrf2. To sum up, the present study first elucidated that Lico A ameliorated AFB1-induced hepatotoxic effects and its main mechanism involved the inhibitory effects on oxidative stress, apoptosis, liver fibrosis, inflammation, and pyroptosis, which might be partially dependent on the regulation of Nrf2. The work may enrich the role and mechanism of Lico A's resistance to liver injury caused by various factors, and its application is promising.


Assuntos
Chalconas , Doença Hepática Induzida por Substâncias e Drogas , Fator 2 Relacionado a NF-E2 , Humanos , Masculino , Animais , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Aflatoxina B1/toxicidade , Camundongos Endogâmicos C57BL , Transdução de Sinais , Estresse Oxidativo , Inflamação/metabolismo , Fígado/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Cirrose Hepática/metabolismo
3.
Int Immunopharmacol ; 115: 109590, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36577159

RESUMO

Chronic cold exposure, which is the main inducer of lung diseases in high latitudes, affects production efficiency and restricts the development of aquaculture. Although the relationship between cold exposure and susceptibility to the lungs is widely accepted, but the influence between them has not been fully explored. The aim of this study is to understand the underlying mechanism. In the present study, the mice, which are used to establish cold stress (CS)-induced lung injury model, are exposed to cold temperature (4 °C) for 3 h each day for 4 weeks. The results indicate that the expression of heat shock protein 70 (HSP70) is augmented by cold exposure. In addition, chronic cold exposure aggravate the formation of malondialdehyde (MDA) and lead to a significant decrease in the contents of micrococcus catalase (CAT) and glutathione (GSH). Moreover, chronic cold exposure significantly exacerbates the expression of inflammation- and apoptosis-related proteins. The activation of Bax and caspase-3 are significantly augmented. However, that of Bcl-2 is decreased. These results are different from those in room team. The results show that chronic cold exposure plays an important roles in the activation of multiple signaling pathways, such as pyroptosis-related, inflammation-related and oxidative stress-regulated signaling pathways. In summary, these investigations support that chronic cold exposure increase the risk of lung injury by activating inflammation, oxidative stress and pyroptosis.


Assuntos
Lesão Pulmonar , Pneumonia , Camundongos , Animais , Piroptose , Estresse Oxidativo , Inflamação , Glutationa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA