Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891905

RESUMO

The DABB proteins, which are characterized by stress-responsive dimeric A/B barrel domains, have multiple functions in plant biology. In Arabidopsis thaliana, these proteins play a crucial role in defending against various pathogenic fungi. However, the specific roles of DABB proteins in Brassica napus remain elusive. In this study, 16 DABB encoding genes were identified, distributed across 10 chromosomes of the B. napus genome, which were classified into 5 branches based on phylogenetic analysis. Genes within the same branch exhibited similar structural domains, conserved motifs, and three-dimensional structures, indicative of the conservation of BnaDABB genes (BnaDABBs). Furthermore, the enrichment of numerous cis-acting elements in hormone induction and light response were revealed in the promoters of BnaDABBs. Expression pattern analysis demonstrated the involvement of BnaDABBs, not only in the organ development of B. napus but also in response to abiotic stresses and Sclerotinia sclerotiorum infection. Altogether, these findings imply the significant impacts of BnaDABBs on plant growth and development, as well as stress responses.


Assuntos
Brassica napus , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Brassica napus/genética , Brassica napus/microbiologia , Brassica napus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Genoma de Planta , Ascomicetos/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética
2.
J Fungi (Basel) ; 10(4)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38667942

RESUMO

Histone post-translational modification is one of the main mechanisms of epigenetic regulation, which plays a crucial role in the control of gene expression and various biological processes. However, whether or not it affects fungal virulence in Sclerotinia sclerotiorum is not clear. In this study, we identified and cloned the histone methyltransferase Defective in methylation 5 (Dim5) in S. sclerotiorum, which encodes a protein containing a typical SET domain. SsDim5 was found to be dynamically expressed during infection. Knockout experiment demonstrated that deletion of SsDim5 reduced the virulence in Ssdim5-1/Ssdim5-2 mutant strains, accompanied by a significant decrease in H3K9 trimethylation levels. Transcriptomic analysis further revealed the downregulation of genes associated with mycotoxins biosynthesis in SsDim5 deletion mutants. Additionally, the absence of SsDim5 affected the fungus's response to oxidative and osmotic, as well as cellular integrity. Together, our results indicate that the H3K9 methyltransferase SsDim5 is essential for H3K9 trimethylation, regulating fungal virulence throug mycotoxins biosynthesis, and the response to environmental stresses in S. sclerotiorum.

3.
J Fungi (Basel) ; 10(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38248922

RESUMO

The ADP-ribosylation factor 6 (Arf6), as the only member of the Arf family III protein, has been extensively studied for its diverse biological functions in animals. Previously, the Arf6 protein in Magnaporthe oryzae was found to be crucial for endocytosis and polarity establishment during asexual development. However, its role remains unclear in S. sclerotiorum. Here, we identified and characterized SsArf6 in S. sclerotiorum using a reverse genetic approach. Deletion of SsArf6 impaired hyphal growth and development and produced more branches. Interestingly, knockout of SsArf6 resulted in an augmented tolerance of S. sclerotiorum towards oxidative stress, and increased its sensitivity towards osmotic stress, indicative of the different roles of SsArf6 in various stress responses. Simultaneously, SsArf6 deletion led to an elevation in melanin accumulation. Moreover, the appressorium formation was severely impaired, and fungal virulence to host plants was significantly reduced. Overall, our findings demonstrate the essential role of SsArf6 in hyphal development, stress responses, appressorium formation, and fungal virulence to host plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA