Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Foods ; 13(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38731737

RESUMO

This study sought to explore the antimicrobial activity of punicalagin against V. parahaemolyticus and its potential modes of action. V. parahaemolyticus ATCC 17802 and RIMD 2210633Sm were exposed to punicalagin, and the energy production, membrane potential, and envelope permeability, as well as the interaction with cell biomolecules, were measured using a variety of fluorescent probes combined with electrophoresis and Raman spectroscopy. Punicalagin treatment disrupted the envelope integrity and induced a decrease in intracellular ATP and pH. The uptake of 1-N-phenyl-naphtylamine (NPN) demonstrated that punicalagin weakened the outer membrane. Punicalagin damaged the cytoplasmic membrane, as indicated by the membrane depolarization and the leakage of intracellular potassium ions, proteins, and nucleic acids. Electronic microscopy observation visualized the cell damage caused by punicalagin. Further, gel electrophoresis coupled with the Raman spectrum assay revealed that punicalagin affected the protein expression of V. parahaemolyticus, and there was no effect on the integrity of genomic DNA. Therefore, the cell envelope and proteins of V. parahaemolyticus were the assailable targets of punicalagin treatment. These findings suggested that punicalagin may be promising as a natural bacteriostatic agent to control the growth of V. parahaemolyticus.

2.
Int J Food Microbiol ; 418: 110714, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38677238

RESUMO

Vibrio parahaemolyticus (V. parahaemolyticus) is a common seafood-borne pathogen that can colonize the intestine of host and cause gastroenteritis. Biofilm formation by V. parahaemolyticus enhances its persistence in various environments, which poses a series of threats to food safety. This work aims to investigate the function of rcpA gene in biofilm formation and virulence of V. parahaemolyticus. Deletion of rcpA significantly reduced motility, biofilm biomass, and extracellular polymeric substances, and inhibited biofilm formation on a variety of food and food contact surfaces. In mice infection model, mice infected with ∆rcpA strain exhibited a decreased rate of pathogen colonization, a lower level of inflammatory cytokines, and less tissue damage when compared to mice infected with wild type strain. RNA-seq analysis revealed that 374 genes were differentially expressed in the rcpA deletion mutant, which include genes related to quorum sensing, flagellar system, ribosome, type VI secretion system, biotin metabolism and transcriptional regulation. In conclusion, rcpA plays a role in determining biofilm formation and virulence of V. parahaemolyticus and further research is necessitated to fully understand its function in V. parahaemolyticus.

3.
Comput Biol Med ; 174: 108219, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581997

RESUMO

Lung cancer is a prevalent form of cancer worldwide, necessitating early and accurate diagnosis for successful treatment. Within medical imaging processing, image segmentation plays a vital role in medical diagnosis. This study applies swarm intelligence algorithms to segment lung cancer pathological images at three levels. The original algorithm incorporates the Whales' search prey mechanism and a random mutation strategy, resulting in an improved version named WDRIME, which aims to enhance convergence speed and avoid local optima (LO). Additionally, the study introduces a multilevel image segmentation method for lung cancer based on the improved algorithm. WDRIME's performance is showcased by comparing it to the state-of-the-art algorithms in IEEE CEC2014. To design a framework for lung cancer image segmentation, this paper combines the WDRIME algorithm with the multilevel segmentation method. Evaluation of the segmentation results employs metrics such as PSNR, SSIM, and FSIM. Overall, the analysis confirms that the proposed algorithm supersedes others regarding convergence speed and accuracy. This model signifies a high-quality segmentation method and offers practical support for in-depth exploration of lung cancer pathological images.


Assuntos
Algoritmos , Neoplasias Pulmonares , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Interpretação de Imagem Assistida por Computador/métodos
4.
J Investig Med ; : 10815589241239577, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38441112

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype and refractory to current treatments. RBM24 is an RNA-binding protein and shows the ability to regulate tumor progression in multiple cancer types. However, its role in TNBC is still unclear. In this study, we analyzed publicly available profiling data from TNBC tissues and cells. Loss- and gain-of-function experiments were performed to determine the function of RBM24 in TNBC cells. The mechanism for RBM24 action in TNBC was investigated. RBM24 was deregulated in TNBC tissues and TNBC cells with depletion of SIPA1, YAP1, or ARID1A, three key regulators of TNBC. Compared to MCF10A breast epithelial cells, TNBC cells had higher levels of RBM24. Knockdown of RBM24 inhibited TNBC cell proliferation, colony formation, and tumorigenesis, while overexpression of RBM24 promoted aggressive phenotype in TNBC cells. YAP1 overexpression induced the expression of RBM24 and the RBM24 promoter-driven luciferase reporter. YAP1 was enriched at the promoter region of RBM24. Overexpression of RBM24 increased ß-catenin-dependent transcriptional activity. Most importantly, knockdown of CTNNB1 rescued RBM24 aggressive phenotype in TNBC cells. Collectively, the YAP1/RBM24/ß-catenin axis plays a critical role in driving TNBC progression. RBM24 may represent a novel therapeutic target for TNBC treatment.

5.
Foods ; 13(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38540924

RESUMO

The aim of this study was to explore the immunomodulatory effect of Polygonatum sibiricum saponin (PS) in a cyclophosphamide-induced (Cy) immunosuppression mice model. Oral administration of PS by gavage effectively alleviated weight loss caused by Cy and increased the index of immune organs. PS promoted the proliferation of splenic lymphocytes and T cell subsets (CD3+, CD355+, CD4+/CD8+) and relieved the xylene-induced inflammatory response and Cy-induced increase of serum hemolysin. Moreover, PS increased serum levels of lactate dehydrogenase and acid phosphatase. PS elevated serum level of cytokines and immunoglobulins (TNF-α, IFN-γ, IL-4, IL-6, IL-ß, SIgA, and IgG) and the expression of mRNA of IL-10, TNF-α, and IL-6 in the spleen. Increased mRNA expression of tight junction protein (ZO-1, Mucin2, Occludin) expression and protein expression of IL-6/MyD88/TLR4 in the small intestine showed that PS exhibited a restorative effect on intestinal mucosal injury caused by cyclophosphamide. Oral PS prevented Cy-induced decline in leukocytes, red blood cells, lymphocytes, hemoglobin concentrations, and neutrophils, providing evidence for alleviating hematopoietic disorders. In addition, PS increased SOD and NO levels, reduced MDA levels, and improved oxidative damage in the liver. These findings demonstrate that PS has the potential to be developed as a supplemental agent for alleviating immunosuppression caused by chemotherapeutic agents.

6.
Int J Biol Macromol ; 262(Pt 2): 130033, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342261

RESUMO

Antibacterial and active packaging materials have gained significant research attention in response to the growing interest in food packaging. In this investigation, we developed hydrogel packaging materials with antibacterial and antioxidant properties by incorporating chitooligosaccharide (COS) and fish skin gelatin (FSG) nanofiber membranes, which readily absorbed water and exhibited swelling characteristics. The nanofiber membranes were fabricated by electrospinning technology, embedding COS within FSG, and subsequently crosslinked through the Maillard reaction facilitated by the addition of glucose. The behavior of conductivity, viscosity, and surface tension in the spinning solutions was analyzed to understand their variation patterns. Scanning electron microscopy (SEM) results revealed that the crosslinked COS/FSG nanofiber membranes possessed a uniform yet disordered fiber structure, with the diameter of the nanofibers increasing as the COS content increased. Remarkably, when the COS content reached 25 %, the COS/FSG nanofiber membranes (CF-C-25) exhibited a suitable fiber diameter of 437.16 ± 63.20 nm. Furthermore, the thermal crosslinking process involving glucose supplementation enhanced the hydrophobicity of CF-C-25. Upon hydration, the CF-H-25 hydrogel displayed a distinctive porous structure, exhibiting a remarkable swelling rate of 954 %. Notably, the inclusion of COS significantly augmented the antibacterial and antioxidant properties of the hydrogel-based nanofiber membranes. CF-H-25 demonstrated an impressive growth inhibition of 90.56 ± 5.91 % against E. coli, coupled with excellent antioxidant capabilities. In continuation, we performed a comprehensive analysis of the total colony count, pH, TVB-N, and TBA of crucian carp. The CF-H-25 hydrogel proved highly effective in extending the shelf life of crucian carp by 2-4 days, suggesting its potential application as an edible membrane for aquatic product packaging.


Assuntos
Quitosana , Nanofibras , Oligossacarídeos , Sulfanilamidas , Animais , Nanofibras/química , Gelatina/química , Antioxidantes/farmacologia , Antioxidantes/química , Escherichia coli , Hidrogéis/farmacologia , Antibacterianos/farmacologia , Quitina , Glucose
7.
BMC Cancer ; 24(1): 270, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408977

RESUMO

BACKGROUND: Previous studies have observed a link between immunophenotypes and lung cancer, both of which are closely associated with genetic factors. However, the causal relationship between them remains unclear. METHODS: Bidirectional Mendelian randomization (MR) was performed on publicly available genome-wide association study (GWAS) summary statistics to analyze the causal relationships between 731 immunophenotypes and lung cancer. Sensitivity analyses were conducted to verify the robustness, heterogeneity, and potential horizontal pleiotropy of our findings. RESULTS: Following Bonferroni adjustment, CD14- CD16+ monocyte (OR = 0.930, 95%CI 0.900-0.960, P = 8.648 × 10- 6, PBonferroni = 0.006) and CD27 on CD24+ CD27+ B cells (OR = 1.036, 95%CI 1.020-1.053, P = 1.595 × 10 - 5, PBonferroni = 0.012) were identified as having a causal role in lung cancer via the inverse variance weighted (IVW) method. At a more relaxed threshold, CD27 on IgD+ CD24+ B cell (OR = 1.035, 95%CI 1.017-1.053, P = 8.666 × 10- 5, PBonferroni = 0.063) and CD27 on switched memory B cell (OR = 1.037, 95%CI 1.018-1.056, P = 1.154 × 10- 4, PBonferroni = 0.084) were further identified. No statistically significant effects of lung cancer on immunophenotypes were found. CONCLUSIONS: The elevated level of CD14- CD16+ monocytes was a protective factor against lung cancer. Conversely, CD27 on CD24+ CD27+ B cell was a risk factor. CD27 on class-switched memory B cells and IgD+ CD24+ B cells were potential risk factors for lung cancer. This research enhanced our comprehension of the interplay between immune responses and lung cancer risk. Additionally, these findings offer valuable perspectives for the development of immunologically oriented therapeutic strategies.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Causalidade , Fatores de Risco
8.
J Fluoresc ; 34(2): 713-721, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37347423

RESUMO

A general egg white gel-sol strategy for fabrication of highly fluorescent Au, Ag, Cu, and Pt nanoclusters (NCs) and the first example of using Au NCs for assay of nuclease activity and inhibition were described. The Au NCs enabled bright red fluorescence, and the other Ag, Cu, and Pt NCs have highly blue emission. The red-emitting Au NCs were further applied in assay of S1 nuclease activity and inhibition. Free hemin efficiently quenches the emission of Au NCs by photoinduced electron transfer due to the formation of Au NCs-hemin conjugates. However, G-quadruplex/hemin exerts negligible effect on its fluorescence due to no Au NCs-hemin conjugate formed. There are stronger electrostatic repulsion effects between both negatively charged G-quadruplex and Au NCs. Therefore, a novel G-quadruplex/hemin-based Au NCs fluorescent sensor for S1 nuclease was designed. A known G-rich oligonucleotide (ODN) serves as not only substrate for S1 nuclease but also for the construction of G-quadruplex/hemin. The G-rich ODN is hydrolyzed into fragments by S1 nuclease resulting in no G-quadruplex/hemin formation. Therefore, the free hemin quenches Au NCs fluorescence remarkably and the assay of S1 nuclease activity and inhibition has accomplished. Both the fluorescent NCs syntheses and the detection of S1 nuclease are facile and efficient.


Assuntos
Ouro , Nanopartículas Metálicas , Prata , Hemina , Transporte de Elétrons , Corantes Fluorescentes
9.
Foods ; 12(19)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37835311

RESUMO

Vibrio parahaemolyticus is a primary seafood-associated pathogen that could cause gastroenteritis. It can attach to various surfaces and form a biofilm, which poses serious threats to food safety. Hence, an effective strategy is urgently needed to control the biofilm formation of V. parahaemolyticus. Laurel essential oil (LEO) is used in food, pharmaceutical and other industries, and is commonly used as a flavoring agent and valuable spice in food industries. The potential antibiofilm effects of LEO against V. parahaemolyticus were examined in this study. LEO obviously reduced biofilm biomass at subinhibitory concentrations (SICs). It decreased the metabolic activity and viability of biofilm cells. Microscopic images and Raman spectrum indicted that LEO interfered with the structure and biochemical compositions of biofilms. Moreover, it also impaired swimming motility, decreased hydrophobicity, inhibited auto-aggregation and reduced attachment to different food-contact surfaces. RT-qPCR revealed that LEO significantly downregulated transcription levels of biofilm-associated genes of V. parahaemolyticus. These findings demonstrate that LEO could be potentially developed as an antibiofilm strategy to control V. parahaemolyticus biofilms in food industries.

10.
Anal Methods ; 15(34): 4260-4267, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37591805

RESUMO

The myeloperoxidase (MPO)/H2O2-Cl- enzymatic reaction system and its product hypochlorous acid (HOCl) are closely related to many disease processes, and new methods to detect the levels of HOCl and MPO are being focused on. MPO is the only known enzyme for the catalytic production of HOCl in biological systems; therefore, monitoring the HOCl levels is a selective and direct readout of MPO activity. This study reported a simple and efficient fluorescence assay of HOCl and MPO activity and inhibition. Highly fluorescent CdS quantum dots (CdS QDs) were prepared in one pot where NaOH-pretreated egg white served as a stabilizer. These CdS QDs exhibit strong green emission centered at ca. 550 nm and enable rapid and selective fluorescence response to HOCl with a linear detection range of 8.0-250 µM and a limit of detection (LOD) of 2.5 µM. Moreover, the CdS QDs were further applied for sensing MPO based on the fluorescence quenching exerted by its reaction product HOCl. Detection of MPO is accomplished with a linear range from 0.1 to 40 mU mL-1 (1 U is the MPO concentration for catalysis of 1 micromolar substrate per minute) and a LOD of 0.06 mU mL-1. The developed synthesis method can be applied to large-scale synthesis of CdS QDs, and the strategy to sense HOCl and MPO activity and inhibition has potential biomedical applications such as clinical diagnosis and drug screening.


Assuntos
Peroxidase , Pontos Quânticos , Clara de Ovo , Peróxido de Hidrogênio , Ácido Hipocloroso , Corantes
11.
Foodborne Pathog Dis ; 20(6): 209-221, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37335913

RESUMO

The aim of this study was to assess the antimicrobial activity of oregano essential oil (OEO) against Shigella flexneri and eradication efficacy of OEO on biofilm. The results showed that the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of OEO against S. flexneri were 0.02% (v/v) and 0.04% (v/v), respectively. OEO effectively killed S. flexneri in Luria-Bertani (LB) broth and contaminated minced pork (the initial population of S. flexneri was about 7.0 log CFU/mL or 7.2 log CFU/g), and after treatment with OEO at 2 MIC in LB broth or at 15 MIC in minced pork, the population of S. flexneri decreased to an undetectable level after 2 or 9 h, respectively. OEO increased intracellular reactive oxygen species concentration, destroyed cell membrane, changed cell morphology, decreased intracellular ATP concentration, caused cell membrane depolarization, and destroyed proteins or inhibited proteins synthesis of S. flexneri. In addition, OEO effectively eradicated the biofilm of S. flexneri by effectively inactivating S. flexneri in mature biofilm, destroying the three-dimensional structure, and reducing exopolysaccharide biomass of S. flexneri. In conclusion, OEO exerts its antimicrobial action effectively and also has a valid scavenging effect on the biofilm of S. flexneri. These findings suggest that OEO has the potential to be used as a natural antibacterial and antibiofilm material in the control of S. flexneri in meat product supply chain, thereby preventing meat-associated infections.


Assuntos
Anti-Infecciosos , Óleos Voláteis , Origanum , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Origanum/química , Shigella flexneri , Anti-Infecciosos/farmacologia , Biofilmes
12.
Food Res Int ; 170: 113024, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37316087

RESUMO

The viable but nonculturable (VBNC) state is adopted by many foodborne pathogenic bacteria to survive in adverse conditions. This study found that lactic acid, a widely used food preservative, can induce Yersinia enterocolitica to enter a VBNC state. Y. enterocolitica treated with 2 mg/mL lactic acid completely lost culturability within 20 min, and 10.137 ± 1.693 % of the cells entered a VBNC state. VBNC state cells could be recovered (resuscitated) in tryptic soy broth (TSB), 5 % (v/v) Tween80-TSB, and 2 mg/mL sodium pyruvate-TSB. In the VBNC state of Y. enterocolitica induced by lactic acid, the intracellular adenosine triphosphate (ATP) concentration and various enzyme activities were decreased, and the reactive oxygen species (ROS) level was elevated, compared with uninduced cells. The VBNC state cells were significantly more resistant to heat and simulated gastric fluid than uninduced cells, but their ability to survive in a high-osmotic-pressure environment was significantly less than that of uninduced cells. The VBNC state cells induced by lactic acid changed from long rod-like to short rod-like, with small vacuoles at the cell edges; the genetic material was loosened and the density of cytoplasm was increased. The VBNC state cells had decreased ability to adhere to and invade Caco-2 (human colorectal adenocarcinoma) cells. The transcription levels of genes related to adhesion, invasion, motility, and resistance to adverse environmental stress were downregulated in VBNC state cells relative to uninduced cells. In meat-based broth, all nine tested strains of Y. enterocolitica entered the VBNC state after lactic acid treatment; among these strains, only VBNC state cells of Y. enterocolitica CMCC 52207 and Isolate 36 could not be recovered. Therefore, this study is a wake-up call for food safety problems caused by VBNC state pathogens induced by lactic acid.


Assuntos
Adenocarcinoma , Yersinia enterocolitica , Humanos , Células CACO-2 , Cafeína , Ácido Láctico
13.
Foods ; 12(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37238746

RESUMO

In recent years, Sargassum fusiforme has gained increasing attention for its ability to improve human health and reduce the risk of disease. Nevertheless, there have been few reports on the beneficial functions of fermented Sargassum fusiforme. In this study, the role of fermented Sargassum fusiforme in the mitigation of ulcerative colitis was investigated. Both fermented and unfermented Sargassum fusiforme demonstrated significant improvement in weight loss, diarrhea, bloody stools, and colon shortening in mice with acute colitis. Fermented Sargassum fusiforme further protected against goblet cell loss, decreased intestinal epithelium permeability, and enhanced the expression of tight junction proteins. Fermented Sargassum fusiforme reduced oxidative stress, which was demonstrated by a decrease in nitric oxide (NO), myeloperoxidase (MPO), and malondialdehyde (MDA) concentrations in the colon of mice and an increase in total superoxide dismutase (T-SOD) activity in the colon. Meanwhile, catalase (CAT) concentrations in both the colon and serum of mice were significantly increased. Fermented Sargassum fusiforme also attenuated the inflammatory response, which was evidenced by the decreased level of pro-inflammatory cytokines in the colon. Moreover, fermented Sargassum fusiforme inhibited the nuclear factor-κB (NF-κB) signaling pathway and increased the production of short-chain fatty acids in the intestine. These findings indicate that fermented Sargassum fusiforme may have the potential to be developed as an alternative strategy for alleviating colitis.

14.
Chemosphere ; 335: 139049, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37245599

RESUMO

Kitchen wastewater can be transformed into a valuable resource through anaerobic fermentation. However, the efficiency of this process is hindered by various factors including salt inhibition and nutrient imbalance. In this study, we examined the effects of co-fermentation with sludge and membrane filtration on the anaerobic fermentation of kitchen wastewater. Our findings indicate that co-fermentation with sludge resulted in a 4-fold increase in fermentation rate and a 2-fold increase in short-chain fatty acids (SCFAs) production. This suggests that the addition of sludge helped to alleviate salt and acid inhibition through ammonia buffering and elemental balancing. The membrane filtration retained 60% of soluble carbohydrates and 15% of proteins in the reactor for further fermentation and recovered nearly 100% of NH4+ and SCFAs in the filtrate, which helped to alleviate acid and ammonia inhibition. The combined fermentation system significantly increased the richness and diversity of microorganisms, particularly caproiciproducens and Clostridium_sensu_stricto_12. The membrane flux remained stable and at a relatively high level, indicating that the combined process may be economically feasible. However, scaling up the co-anaerobic fermentation of kitchen wastewater and sludge in a membrane reactor is necessary for further economic evaluation in the future.


Assuntos
Esgotos , Águas Residuárias , Fermentação , Amônia , Ácidos Graxos Voláteis , Anaerobiose , Concentração de Íons de Hidrogênio
15.
Front Microbiol ; 14: 1175912, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37125156

RESUMO

Staphylococcus aureus is a common foodborne pathogen which can form biofilms to help them resist to antimicrobials. It brings great harm to human health. Punicalagin has good antimicrobial activities against S. aureus, but its effect on biofilm formation has not been clearly illustrated. The aim of this study was to explore the antibiofilm effects of punicalagin against S. aureus. Results showed that punicalagin did not significantly interfere with the growth of S. aureus at the concentrations of 1/64 MIC to 1/16 MIC. The biomass and metabolic activity of biofilms were significantly reduced when exposed to sub-inhibitory concentrations of punicalagin. The number of viable cells in the biofilms was also decreased after punicalagin treatment. Scanning electron microscopy and confocal laser scanning microscopy images confirmed that punicalagin damaged the structure of biofilms. The antibiofilm mechanism was partly due to the modification of the cell surface which led to the reduction of cell surface hydrophobicity. These findings suggest that punicalagin has the potential to be developed as an alternative to control S. aureus biofilms.

16.
Foodborne Pathog Dis ; 20(4): 138-148, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37010405

RESUMO

Shigella sonnei, the causative agents of bacillary dysentery, remains a significant threat to public health. Litsea cubeba essential oil (LC-EO), one of the natural essential oils, exhibited promising biological activities. In this study, the antibacterial effects and possible mechanisms of LC-EO on S. sonnei and its application in lettuce medium were investigated. The minimum inhibitory concentration (MIC) of LC-EO against S. sonnei ATCC 25931 and CMCC 51592 was 4 and 6 µL/mL, respectively. The LC-EO could inhibit the growth of S. sonnei, and decreased S. sonnei to undetectable levels with 4 µL/mL for 1 h in Luria-Bertani broth. The antibacterial mechanism indicated that after the treatment of LC-EO, the production of reactive oxygen species and the activity of superoxide dismutase were significantly elevated in S. sonnei cells, and eventually led to the lipid oxidation product, the malondialdehyde content that significantly increased. Moreover, LC-EO at 2 MIC could destroy 96.51% of bacterial cell membrane integrity, and made S. sonnei cells to appear wrinkled with a rough surface, so that the intracellular adenosine triphosphate leakage was about 0.352-0.030 µmol/L. Finally, the results of application evaluation indicated that the addition of LC-EO at 4 µL/mL in lettuce leaves and 6 µL/mL in lettuce juice could decrease the number of S. sonnei to undetectable levels without remarkable influence on the lettuce leaf sensory quality. In summary, LC-EO exerted strong antibacterial activity and has the potential to control S. sonnei in food industry.


Assuntos
Litsea , Óleos Voláteis , Óleos Voláteis/farmacologia , Lactuca , Shigella sonnei , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
17.
Int J Biol Macromol ; 241: 124560, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37088192

RESUMO

The purposes of this study were to characterize polysaccharides from Rhopilema esculentum and to explore their impacts on gut barrier function and inflammation in vitro and in mice with chronic colitis triggered by long-term administration of dextran sulfate sodium (DSS). Two polysaccharides were isolated and purified from Rhopilema esculentum, named REP-1 and REP-2. REP-1 with a molecular weight of 8.21 kDa was composed of mannose, glucosamine, galactosamine, glucose, galactose, and arabinose with a molar ratio of 0.04:0.03:0.38:1:1.36:0.06, and REP-2 with a molecular weight of 10.11 kDa mainly consisted of mannose, glucuronic acid, galactosamine, glucose, galactose, and arabinose with a molar ratio of 0.04:0.12:0.41:1:1.2:0.06. Compared to REP-1, REP-2 displayed better ability to up-regulate the expression of genes related to tight junctions and mucus in LPS-stimulated Caco-2 cells and better immunomodulatory activities in RAW264.7 macrophages. Then animal experiments showed that REP-2 efficiently attenuated the symptoms of colitis, decreased the secretion of pro-inflammatory cytokines, and restored intestinal barrier function in mice with chronic colitis. These results demonstrate that REP-2 might be a promising agent for protecting intestinal and mucus barrier and mitigating inflammation-associated intestinal diseases such as ulcerative colitis.


Assuntos
Colite Ulcerativa , Colite , Humanos , Animais , Camundongos , Células CACO-2 , Manose/metabolismo , Galactose/metabolismo , Arabinose/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Inflamação/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/metabolismo , Colite Ulcerativa/metabolismo , Glucose/metabolismo , Galactosamina , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo/metabolismo
18.
Food Funct ; 14(6): 2836-2846, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36880221

RESUMO

A westernized diet characterized by high fat and sugar is tightly associated with the development of metabolic diseases and inflammatory bowel disease. Although a high-fat diet has been extensively studied for its involvement in various diseases, fewer studies have examined the impact of a high-sugar diet on the development of certain diseases, particularly enteric infections. This study aimed to explore the effect of a high sucrose diet on Salmonella Typhimurium-induced infection. C57BL/6 mice received a normal diet (Control) or a high sucrose diet (HSD) for eight weeks and then were infected by Salmonella Typhimurium. The high-sugar diet profoundly altered the relative abundance of certain microbial taxa. Bacteroidetes and Verrucomicrobiota were more abundant in normal diet-fed mice than in HSD-fed mice. Moreover, short-chain fatty acids (SCFAs) and branched-chain fatty acids (BCFAs) were significantly higher in mice from the control group than the HSD group. More S. Typhimurium counts in feces and other tissues were observed in HSD-fed mice after infection. Tight junction proteins and antimicrobial peptides were significantly decreased in HSD-fed mice. Fecal microbiota transplantation (FMT) demonstrated that mice that received normal fecal microbiota had lower Salmonella Typhimurium burdens compared with mice that received HSD fecal microbiota, indicating that the altered microbial communities are associated with the severity of infection. Together, these findings suggest that the excessive intake of sucrose disturbs intestinal homeostasis and predisposes mice to Salmonella-induced infection.


Assuntos
Microbiota , Infecções por Salmonella , Camundongos , Animais , Salmonella typhimurium , Sacarose/efeitos adversos , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica/efeitos adversos
19.
Int J Food Microbiol ; 391-393: 110150, 2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-36870235

RESUMO

This study investigated the antibacterial and antibiofilm mechanism of ultrasound (US) combined with citral nanoemulsion (CLNE) against Staphylococcus aureus and mature biofilm. Combined treatments resulted in greater reductions in bacterial numbers compared to ultrasound or CLNE treatments alone. Confocal laser scanning microscopy (CLSM), flow cytometry (FCM), protein nucleic acid leakage, and N-phenyl-l-naphthylamine (NPN) uptake analysis showed that the combined treatment disrupted cell membrane integrity and permeability. Reactive oxygen species (ROS) and malondialdehyde (MDA) assays indicated that US+CLNE exacerbated cellular oxidative stress and membrane lipid peroxidation. Field emission scanning electron microscopy (FESEM) revealed that the synergistic processing of ultrasound and CLNE resulted in cell rupture and collapse. In addition, US+CLNE showed a more pronounced removal effect than both alone in the biofilm on the stainless steel sheet. US+CLNE reduced biomass, the number of viable cells in the biofilm, cell viability and EPS polysaccharide contents. The results of CLSM also showed that US+CLNE disrupted the structure of the biofilm. This research elucidates the synergistic antibacterial and anti-biofilm mechanism of ultrasound combined citral nanoemulsion, which provides a safe and efficient sterilization method for the food industry.


Assuntos
Antibacterianos , Staphylococcus aureus , Antibacterianos/química , Monoterpenos Acíclicos , Biofilmes , Testes de Sensibilidade Microbiana
20.
Food Funct ; 14(6): 2768-2780, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36857703

RESUMO

Cherry is a nutrient-rich food that is good for health. This study demonstrated the inhibitory action of dietary cherry juice on high-fat diet (HFD)-induced obesity in mice. Cherry juice intervention significantly decreased body weight, fat contents, and blood lipid levels in obese mice. The overproduction of proinflammatory cytokines was suppressed by dietary cherry juice, which was accompanied by the elevation of tight junction proteins to maintain intestinal barrier. Moreover, dietary cherry juice restored the decreased production of short-chain fatty acids (SCFAs) by regulating the composition and abundance of gut microbiota. In addition, dietary cherry juice also suppressed the expression of some microRNAs associated with obesity such as miR-200c-3p, miR-125a-5p, miR-132-3p, and miR-223-3p and target proteins related with microRNAs in the inguinal or epididymal white tissue in the obese mice. These results offer a fresh perspective on cherry juice's role in the prevention of obesity caused by the HFD.


Assuntos
Microbioma Gastrointestinal , MicroRNAs , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , MicroRNAs/genética , Microbioma Gastrointestinal/fisiologia , Camundongos Endogâmicos C57BL , Disbiose/metabolismo , Camundongos Obesos , Obesidade/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA