Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 21(31): 6298-6301, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37486292

RESUMO

We have developed a new iron-catalyzed ring opening alkenylation of cycloketoximes with ß-nitrostyrenes for the facile synthesis of flexible distal cyanoalkyl alkenes. Both non-active strained cycloketoximes and less-strained cycloketoximes could be coupled with ß-nitrostyrenes with excellent regio- and stereoselectivity under base-free redox-neutral conditions. The diboron reagent played an irreplaceable role in this transformation. A reasonable radical-mediated process could be involved in this catalytic cycle.

2.
Appl Environ Microbiol ; 87(21): e0148821, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34432490

RESUMO

Electromethanogenesis refers to the process whereby methanogens utilize current for the reduction of CO2 to CH4. Setting low cathode potentials is essential for this process. In this study, we tested if magnetite, an iron oxide mineral widespread in the environment, can facilitate the adaptation of methanogen communities to the elevation of cathode potentials in electrochemical reactors. Two-chamber electrochemical reactors were constructed with inoculants obtained from paddy field soil. We elevated cathode potentials stepwise from the initial -0.6 V versus the standard hydrogen electrode (SHE) to -0.5 V and then to -0.4 V over the 130 days of acclimation. Only weak current consumption and CH4 production were observed in the bioreactors without magnetite. However, significant current consumption and CH4 production were recorded in the magnetite bioreactors. The robustness of electroactivity of the magnetite bioreactors was not affected by the elevation of cathode potentials from -0.6 V to -0.4 V. However, the current consumption and CH4 production were halted in the bioreactors without magnetite when the cathode potentials were elevated to -0.4 V. Methanogens related to Methanospirillum were enriched on the cathode surfaces of magnetite bioreactors at -0.4 V, while Methanosarcina relatively dominated in the bioreactors without magnetite. Methanobacterium also increased in the magnetite bioreactors but stayed off electrodes at -0.4 V. Apparently, the magnetite greatly facilitates the development of biocathodes, and it appears that with the aid of magnetite, Methanospirillum spp. can adapt to the high cathode potentials, performing efficient electromethanogenesis. IMPORTANCE Converting CO2 to CH4 through bioelectrochemistry is a promising approach to the development of green energy biotechnology. This process, however, requires low cathode potentials, which entails a cost. In this study, we tested if magnetite, a conductive iron mineral, can facilitate the adaptation of methanogens to the elevation of cathode potentials. In two-chamber reactors constructed by using inoculants obtained from paddy field soil, biocathodes developed robustly in the presence of magnetite, whereas only weak activities in CH4 production and current consumption were observed in the bioreactors without magnetite. The elevation of cathode potentials did not affect the robustness of electroactivity of the magnetite bioreactors over the 130 days of acclimation. Methanospirillum strains were identified as the key methanogens associated with the cathode surfaces during the operation at high potentials. The findings reported in this study shed new light on the adaptation of methanogen communities to the elevated cathode potentials in the presence of magnetite.


Assuntos
Reatores Biológicos/microbiologia , Dióxido de Carbono , Óxido Ferroso-Férrico , Metano/metabolismo , Biotecnologia , Dióxido de Carbono/metabolismo , Eletrodos , Methanobacterium , Methanosarcina , Methanospirillum
3.
Environ Microbiol Rep ; 11(2): 236-248, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30790444

RESUMO

Recent studies have shown that application of conductive materials including magnetite and carbon nanotubes (CNTs) can promote the methanogenic decomposition of short-chain fatty acids and even more complex organic matter in anaerobic digesters and natural habitats. The linkage to microbial identity and the mechanisms, however, remain poorly understood. Here, we evaluate the effects of nanoscale magnetite (nanoFe3 O4 ) and multiwalled CNTs on the syntrophic oxidation of propionate in an enrichment obtained from lake sediment. The microbial populations were composed mainly of Smithella, Syntrophomonas, Methanosaeta, Methanosarcina and Methanoregula. In addition to acetate, butyrate was transiently accumulated indicating that propionate was oxidized by Smithella via the dismutation pathway and part of the leaked butyrate was oxidized by Syntrophomonas. Propionate oxidation and CH4 production were significantly accelerated in the presence of nanoFe3 O4 and CNTs. While propionate oxidation was suppressed upon H2 application and suspended completely upon formate application in the control, this suppressive effect was substantially compromised in the presence of nanoFe3 O4 and CNTs. The tests on hydrogenotrophic methanogenesis of a pure culture methanogen and of the enrichment culture without propionate showed negative effect by both materials. The positive effect of nanoFe3 O4 disappeared when it was insulated by surface-coating with silica. Observations made with fluorescence in situ hybridization and scanning electron microscope indicated the extensive formation of microbial cell-conductive material mixture aggregates. Our results suggest that direct interspecies electron transfer is likely activated by the conductive materials and operates in concert with H2 /formate-dependent electron transfer for syntrophic propionate oxidation in the sediment enrichment.


Assuntos
Deltaproteobacteria/metabolismo , Óxido Ferroso-Férrico/análise , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Nanotubos de Carbono/análise , Propionatos/metabolismo , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Butiratos/metabolismo , Deltaproteobacteria/genética , Deltaproteobacteria/isolamento & purificação , Óxido Ferroso-Férrico/farmacologia , Formiatos/farmacologia , Hidrogênio/farmacologia , Metano/metabolismo , Oxirredução/efeitos dos fármacos , Filogenia , RNA Ribossômico 16S/genética , Simbiose
4.
PeerJ ; 6: e4267, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29340254

RESUMO

Carboxylated multiwalled carbon nanotubes (MWCNTs-COOH) have become a growing concern in terms of their fate and toxicity in aqueous environments. Methane (CH4) is a major product of organic matter degradation in waterlogged environments. In this study, we determined the effect of MWCNTs-COOH on the production of CH4 from propionate oxidation in paddy soil enrichments. The results showed that the methanogenesis from propionate degradation was accelerated in the presence of MWCNTs-COOH. In addition, the rates of CH4 production and propionate degradation increased with increasing concentrations of MWCNTs-COOH. Scanning electron microscopy (SEM) observations showed that the cells were intact and maintained their structure in the presence of MWCNTs-COOH. In addition, SEM and fluorescence in situ hybridization (FISH) images revealed that the cells were in direct contact with the MWCNTs and formed cell-MWCNTs aggregates that contained both bacteria and archaea. On the other hand, nontoxic magnetite nanoparticles (Fe3O4) had similar effects on the CH4 production and cell integrity as the MWCNTs-COOH. Compared with no nanomaterial addition, the relative abundances of Geobacter and Methanosarcina species increased in the presence of MWCNTs-COOH. This study suggests that MWCNTs-COOH exerted positive rather than cytotoxic effects on the syntrophic oxidation of propionate in paddy soil enrichments and affected the bacterial and archaeal community structure at the test concentrations. These findings provide novel insight into the consequences of nanomaterial release into anoxic natural environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA