Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(35): e202306948, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37408357

RESUMO

Improved durability, enhanced interfacial stability, and room temperature applicability are desirable properties for all-solid-state lithium metal batteries (ASSLMBs), yet these desired properties are rarely achieved simultaneously. Here, in this work, it is noticed that the huge resistance at Li metal/electrolyte interface dominantly impeded the normal cycling of ASSLMBs especially at around room temperature (<30 °C). Accordingly, a supramolecular polymer ion conductor (SPC) with "weak solvation" of Li+ was prepared. Benefiting from the halogen-bonding interaction between the electron-deficient iodine atom (on 1,4-diiodotetrafluorobenzene) and electron-rich oxygen atoms (on ethylene oxide), the O-Li+ coordination was significantly weakened. Therefore, the SPC achieves rapid Li+ transport with high Li+ transference number, and importantly, derives a unique Li2 O-rich SEI with low interfacial resistance on lithium metal surface, therefore enabling stable cycling of ASSLMBs even down to 10 °C. This work is a new exploration of halogen-bonding chemistry in solid polymer electrolyte and highlights the importance of "weak solvation" of Li+ in the solid-state electrolyte for room temperature ASSLMBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA