Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Aquat Toxicol ; 261: 106633, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37451870

RESUMO

As an essential trace metal, copper (Cu) regulation, distribution and detoxification among different cellular organelles remain much unknown. In the current study, bioimaging tool was used in visualizing the locations of Cu among different organelles in fish fin cells isolated from rabbitfish Siganus fuscescens. Exposure concentration of Cu directly affected the Cu bioaccumulation and toxicity. When the exposure dosage of Cu reached 100 µM, it began to damage the cells and affect the cell viability after 10 min of exposure. Remarkably, while various Cu concentrations (50∼150 µM) initially reduced the cell viability, they did not lead to a further loss in viability over extended exposure period. Upon entry to the cells, Cu was mainly targeted to the mitochondria whose number, size and network responded immediately to the incoming Cu. However, Cu toxicity did not increase time-dependently, strongly indicating that these mitochondria damaged by Cu could be removed and its cytotoxicity could be relieved. Bioimaging results showed that lysosomes interacted with the mitochondria, which were subsequently digested within a few minutes. Meanwhile the lysosomal number increased, and the size and pH of lysosomes decreased. These reactions were in line with the observed mitophagy, suggesting that mitochondrial Cu could be detoxified, and the damaged mitochondria were removed by lysosome via mitophagy. By further purifying the cellular organelles, the mitochondrial and lysosomal Cu amounts were quantified and found to be in line with the imaging results. The present study suggested that excessive mitochondrial Cu could be removed via mitophagy to relieve the Cu toxicity.


Assuntos
Oligoelementos , Poluentes Químicos da Água , Animais , Cobre/toxicidade , Cobre/metabolismo , Mitofagia , Poluentes Químicos da Água/toxicidade , Mitocôndrias/metabolismo , Oligoelementos/metabolismo , Lisossomos/metabolismo , Peixes/metabolismo
2.
Sci Total Environ ; 875: 162538, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36898541

RESUMO

Zinc ion (Zn) is an essential nutrition element and it is important to understand its regulation and distribution among different cellular organelles. Here, subcellular trafficking of Zn in rabbitfish fin cells was investigated through bioimaging, and the results showed that the toxicity and bioaccumulation of Zn were both dose- and time-dependent. Cytotoxicity of Zn only occurred when the Zn concentration reached 200-250 µM after 3 h of exposure when the cellular quota of Zn:P reached a threshold level around 0.7. Remarkably, the cells were able to maintain homeostasis at a low Zn exposure concentration or within the first 4-h exposure. Zn homeostasis was mainly regulated by the lysosomes which stored Zn within the short exposure period, during which the number and size of lysosomes as well as the lysozyme activity increased in response to incoming Zn. However, with increasing Zn concentration beyond a threshold concentration (> 200 µM) and an exposure time > 3 h, homeostasis was disrupted, leading to an Zn spillover to cytoplasm and other cellular organelles. At the same time, cell viability decreased due to the Zn damage on mitochondria which caused morphological changes (smaller and rounder dots) and over production of reactive oxygen species, indicating the dysfunction of mitochondria. By further purifying the cellular organelles, cell viability was found to be consistent with the mitochondrial Zn amount. This study suggested that the amount of mitochondrial Zn was an excellent predictor of Zn toxicity on fish cells.


Assuntos
Mitocôndrias , Zinco , Animais , Zinco/toxicidade , Zinco/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Lisossomos , Sobrevivência Celular
3.
Fish Shellfish Immunol ; 127: 521-529, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35792347

RESUMO

The root of Scutellaria baicalensis (Scutellaria Radix) has been used as herbal medicine for years in China; however, its stem and leaf (aerial part) are considered as waste. The water extract of aerial part of S. baicalensis, named as SBA, having anti-microbial property has been applied in fish aquaculture. To extend the usage of SBA in fish feeding, SBA was employed to feed pearl gentian grouper (a hybrid of Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂), and subsequently the total fish output, the levels of digestive enzymes and inflammatory cytokines were determined. Feeding the fish with different doses of SBA for two months, the body length and weight were significantly increased by 5%-10%. In parallel, the expressions of alkaline phosphatase and growth-related factors in bone, liver and muscle of SBA-fed fish were doubled, which could account the growth promoting effect of SBA. Besides, the activity of digestive enzyme, lipase, and the expressions of anti-inflammatory cytokines were markedly stimulated by 2-3 times under the feeding of 3% SBA-containing diet. The results indicated the growth promoting activity of SBA in culture of pearl gentian grouper, as well as the effect of SBA in strengthening the immunity. These beneficial effects of SBA feeding can increase the total yield of pearl gentian grouper in aquaculture. Thus, the re-cycle of waste products during the farming of S. baicalensis herb in serving as fish feeding should be encouraged.


Assuntos
Bass , Ração Animal/análise , Animais , Citocinas/genética , Suplementos Nutricionais/análise , Componentes Aéreos da Planta , Scutellaria baicalensis
4.
Front Pharmacol ; 13: 872912, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370728

RESUMO

Capsaicin, a major ingredient in chili pepper, has broad pharmaceutical applications, including relieving pain, anti-inflammation, and treating psoriasis. In dermatological biology, capsaicin has been shown to prevent the ultraviolet (UV)-induced melanogenesis via TRPV1 receptor. To strengthen the roles of capsaicin in skin function, the damaged skin, triggered by exposure to UV, was reversed by capsaicin in both in vitro and in vivo models. In cultured dermal fibroblasts, the exposure to UV induced a decrease of collagen synthesis and increases expression of matrix metalloproteinases (MMPs), generation of reactive oxygen species (ROS), and phosphorylation of Erk and c-Jun, and these events subsequently led to skin damage. However, the UV-mediated damages could be reversed by pre-treatment with capsaicin in a dose-dependent manner. The effect of capsaicin in blocking the UV-mediated collagen synthesis was mediated by reducing generation of ROS in dermal fibroblasts, instead of the receptor for capsaicin. Hence, capsaicin has high potential value in applying as an agent for anti-skin aging in dermatology.

5.
Food Sci Nutr ; 9(9): 4827-4838, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34531995

RESUMO

The root of Scutellaria baicalensis (Scutellaria Radix) has been used as herbal medicine for years, while its stem and leaf (aerial part) are considered as waste. The water extract from the aerial part of S. baicalensis (named as SBA) being included in the feeding of Siganus fuscescens (grey rabbit fish) has been shown to replace antibiotics in aquaculture with excellent outcome. To strengthen the usage of SBA in fish feeding, the total fish output and its nutritive value were determined here. Feeding the fishes with different doses of SBA for a month, the body length and weight were significantly increased after intake of standard feed containing 1% SBA. In parallel, the expressions of alkaline phosphatase and growth-related factors in bone, liver, and muscle of 1% SBA-fed fishes were markedly increased, suggesting the beneficial effects of SBA. The composition of amino acid and fatty acid in fish muscle, after intaking 1% SBA-containing feed, was altered. In SBA-fed fish muscle, the amounts of threonine and methionine were increased, while the amount of leucine was decreased, as compared with control group. The amounts of fatty acids, including docosahexaenoic acid, phosphatidylcholine, and phosphatidylethanolamine, were increased in the 1% SBA-fed fish, while the amounts of triglycerides were decreased. The results indicated the growth-promoting activity of SBA in an in vivo culture of S. fuscescens, as well as to increase the nutritive values of the muscle. Thus, the re-cycle of waste products during the farming of S. baicalensis herb in serving as fish feeding should be encouraged.

6.
Fish Shellfish Immunol Rep ; 2: 100036, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36420515

RESUMO

A new cell line was isolated and characterized from the head kidney of Siganus fuscescens (rabbit fish). The new macrophagic-like cell line was named as rabbit fish macrophage (RFM), and which could be sub-cultured for over 50 cycles since the development. RFM cell line was tested for growth in different temperatures and serum concentrations: the best growing condition was optimized at 20% serum under 28 °C. In cultured RFM cells, sequencing of 18S rRNA, as well as immunostaining of cytokeratin and CD 68, confirmed the identity as macrophagic cell of S. fuscescens. Cultured RFM cells were exposed to challenge of inflammation, as triggered by LPS, showing highly sensitive responses to inflammation, including release of nitric oxide, expression of cytokine, and activation of phagocytosis. The water extract of aerial part of Scutellaria baicalensis, named as SBA, has been shown anti-inflammatory property in S. fuscescens fish. In order to extend the application of SBA in aquaculture, the extract and its effective flavonoids, i.e. baicalin and scutellarin, were applied in LPS-treated RFM cells. Application of SBA extract, baicalin or scutellarin, inhibited the expressions of LPS-induced inflammatory cytokines, i.e. IL-1ß, TNF-α, as well as the signaling of transcription factor NF-κB. The results support the established RFM cell line could be an ideal in vitro model in drug screening relating to inflammation. Additionally, the notion of SBA herbal extract in fish aquaculture is supported by its efficacy against inflammation.

7.
J Agric Food Chem ; 68(50): 14863-14873, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33280383

RESUMO

Chili pepper belongs to the genus Capsicum of Solanaceae family. Capsaicin is the primary capsaicinoid in placenta and flesh of chili pepper fruit, which has been shown to have various pharmacological functions, including gastric protection, anti-inflammation, and obesity treatment. Here, we revealed that capsaicin as well as chilli extract was able to inhibit synthesis of melanin in melanocytes. In cultured melanocytes, the melanin content was reduced to 54 ± 6.55% and 42 ± 7.41% with p < 0.001 under treatment of 50 µM capsaicin for 24 and 72 h, respectively. In parallel, the protein levels of tyrosinase and tyrosinase-related protein-1 were reduced to 62 ± 8.35% and 48 ± 8.92% with p < 0.001. Such an inhibitory effect of capsaicin was mediated by activation of transient receptor potential vanilloid 1-induced phosphorylation of extracellular signal-regulated kinase. This resulted in a degradation of microphthalmia-associated transcription factor, leading to reduction of melanogenic enzymes and melanin. These results revealed that capsaicin could be an effective inhibitor for skin melanogenesis. Hence, chili pepper, as our daily food, has potential in dermatological application, and capsaicin should be considered as a safe agent in treating hyperpigmentation problems.


Assuntos
Capsaicina/farmacologia , Melaninas/biossíntese , Melanócitos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Canais de Cátion TRPV/metabolismo , Animais , Capsicum/química , Linhagem Celular , Frutas/química , Humanos , Melanócitos/enzimologia , Melanócitos/metabolismo , Camundongos , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Fosforilação , Pele/efeitos dos fármacos , Pele/enzimologia , Pele/metabolismo , Canais de Cátion TRPV/genética
8.
Fish Shellfish Immunol ; 106: 71-78, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32738512

RESUMO

A new cell line derived from dorsal fin of rabbit fish Siganus fuscescens was developed and characterized. The cell line was isolated from the dorsal fin, named as rabbit fish fin (RFF) cell line, and which was sub-cultured for 50 cycles since the development. This cell line was tested for growth in different temperatures and serum concentrations, and the best growing condition was at 20% serum at 28 °C. In cultured RFF cells, amplification of 18S rRNA from genomic DNA and immunostaining of cellular cytokeratin confirmed the proper identity of S. fuscescens fish. After 30th passage of cultures, the cells were exposed to challenge of inflammation, triggered by LPS, and hypoxia, mimicked by CoCl2. Cultured RFF cells showed robust sensitive responses to inflammation and hypoxia in directing the expressions of cytokines and hypoxia inducible factor-1α (HIF-1α). The water extract of aerial part of Scutellaria baicalensis (SBA) has been shown in rabbit fish to prevent inflammation. Here, we extended this notion of testing the efficacy of SBA extract in the developed cultured RFF cells. Application of SBA extract inhibited the expression of LPS-induced inflammatory cytokines, i.e. IL-1ß, IL-6, as well as the signaling of NF-κB. The application of CoCl2 in cultured RFF cells triggered the hypoxia-induced cell death and up regulation of HIF-1α. As expected, applied SBA extract in the cultures prevented the hypoxia-induced signaling. Our results show the established RFF cell line may be served as an ideal in vitro model in drug screening relating to inflammation and hypoxia. Additionally, we are supporting the usage of SBA herbal extract in fish aquaculture, which possesses efficacy against inflammation and hypoxia.


Assuntos
Anti-Inflamatórios/farmacologia , Doenças dos Peixes/imunologia , Perciformes/imunologia , Extratos Vegetais/farmacologia , Animais , Linhagem Celular , Hipóxia/imunologia , Hipóxia/veterinária , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Inflamação/imunologia , Inflamação/veterinária , NF-kappa B/imunologia , Scutellaria baicalensis , Transdução de Sinais/efeitos dos fármacos
9.
FASEB J ; 34(7): 8941-8958, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32519787

RESUMO

Cholinergic system conducts signal transmission in brain and muscle. Besides nervous system, the nonneuronal functions of cholinergic system have been proposed in various tissues. The expression of cholinergic proteins and release of acetylcholine in human skin have been reported, but its mechanism and influence on dermatological functions is not elucidated. Here, the expression profile of cholinergic markers was further investigated in skin and keratinocyte. The expression levels of choline acetyltransferase (ChAT), acetylcholinesterase (AChE), vesicular acetylcholine transporter (VAChT), and synaptophysin, were upregulated during differentiation of keratinocytes. In cultured keratinocytes, a transient exposure of solar light induced the release of acetylcholine, which was mediated by intracellular Ca2+ mobilization. The light-induced acetylcholine release was mediated by the present of opsin. The light-induced melanogenesis was inhibited by acetylcholine or AChE inhibitor in melanocyte in vitro and mouse skin ex vivo. These results indicated that the potential role of cholinergic system could be a negative regulator in skin pigmentation.


Assuntos
Acetilcolina/metabolismo , Acetilcolinesterase/metabolismo , Queratinócitos/metabolismo , Melanócitos/metabolismo , Pele/metabolismo , Luz Solar , Acetilcolinesterase/química , Animais , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos da radiação , Masculino , Melanócitos/citologia , Melanócitos/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Pele/citologia , Pele/efeitos da radiação
10.
Front Pharmacol ; 11: 526, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32410995

RESUMO

Kaempferol is a major flavonoid in Ginkgo Folium and other edible plants, which is being proposed here to have roles in angiogenesis. Angiogenesis is important in both physiological and pathological development. Here, kaempferol was shown to bind with vascular endothelial growth factor (VEGF), probably in the heparin binding domain of VEGF: this binding potentiated the angiogenic functions of VEGF in various culture models. Kaempferol potentiated the VEGF-induced cell motility in human umbilical vein endothelial cells (HUVECs), as well as the sub-intestinal vessel sprouting in zebrafish embryos and formation of microvascular in rat aortic ring. In cultured HUVECs, application of kaempferol strongly potentiated the VEGF-induced phosphorylations of VEGFR2, endothelial nitric oxide synthase (eNOS) and extracellular signal-regulated kinase (Erk) in time-dependent and concentration-dependent manners, and in parallel the VEGF-mediated expressions of matrix metalloproteinases (MMPs), MMP-2 and MMP-9, were significantly enhanced. In addition, the potentiation effect of kaempferol was revealed in VEGF-induced migration of skin cell and monocyte. Taken together, our results suggested the pharmacological roles of kaempferol in potentiating VEGF-mediated functions should be considered.

11.
J Agric Food Chem ; 67(4): 1127-1137, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30525561

RESUMO

Resveratrol is a polyphenol commonly found in plants and food health products, such as grape and red wine, and was identified for its binding to vascular endothelial growth factor (VEGF) by using HerboChips screening. The binding, therefore, resulted in alterations of VEGF binding to its receptor and revealed the roles of VEGF in angiogenesis. Several lines of evidence gave support to the inhibitory activities of resveratrol in VEGF-triggered angiogenesis. In human umbilical vein endothelial cells (HUVECs), compared with a VEGF-induced group, resveratrol, at a high concentration, suppressed VEGF-mediated endothelial cell proliferation, cell migration, cell invasion, and tube formation by 80 ± 9.01%, 140 ± 3.78%, 110 ± 7.51%, and 120 ± 10.26%, respectively. Moreover, resveratrol inhibited the subintestinal vessel formation in zebrafish embryo. In signaling cascades, application of resveratrol in HUVECs reduced the VEGF-triggered VEGF receptor 2 phosphorylation and c-Jun N-terminal kinase phosphorylation. Moreover, the VEGF-mediated phosphorylations of endothelial nitric oxide synthase, protein kinase B, and extracellular signal-regulated kinase were obviously decreased by (3 ± 0.37)-, (2 ± 0.27)- and (6 ± 0.23)-fold, respectively, in the presence of resveratrol at high concentration. Parallelly, the VEGF-induced reactive oxygen species formation was significantly decreased by 50 ± 7.88% to 120 ± 14.82% under resveratrol treatment. Thus, our results provided support to the antiangiogenic roles of resveratrol, as well as its related signaling mechanisms, in attenuating the VEGF-mediated responses. The present results supported possible development of resveratrol, which should be considered as a therapeutic agent in terms of prevention and clinical treatment of diseases related to angiogenesis.


Assuntos
Inibidores da Angiogênese/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Resveratrol/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Fosforilação/efeitos dos fármacos , Receptores de Fatores de Crescimento do Endotélio Vascular/química , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Resveratrol/química , Resveratrol/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/química , Peixe-Zebra
12.
Front Pharmacol ; 9: 853, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30131696

RESUMO

Chemo-resistance is an obstacle in therapy of lung cancer. Alternative therapy of using herbal medicine has been proposed to resolve this obstacle. Yu Ping Feng San (YPFS), a common Chinese herbal medicinal mixture, has been reported to show anti-drug resistance on cisplatin (DDP), a common lung cancer drug. To optimize the anti-cancer function of YPFS, different Chinese herbal extracts having known function to overcome lung cancer were screened in combining with YPFS, as to increase the efficacy of DDP in drug resistance lung cancer cell, A549/DDP. Amongst these herbal extracts, Ginkgo Folium exhibited the most promoting sensitized effect. This revised herbal formula, named as YPFS+GF, promoted the DDP-induced toxicity by over 2-fold as compared to that of YPFS alone; this potentiation was confirmed by inducing cell apoptosis. The anti-drug resistance of YPFS, triggered by an increase of intracellular concentration of DDP, was accompanied by an increased expression and activity of WT1, which consequently decreased the transcript level of MVP. In addition, the MVP-mediated downstream effector mTOR2/AKT was disrupted after application of YPFS+GF in DDP-treated A549/DDP cell: this disruption was characterized by the decline of mTORC2 components, e.g., Rictor, p-mTOR, as well as the phosphorylation level of its downstream protein AKT. The disruption on mTORC2/AKT could be reversed by mTORC2 inducer insulin and promoted by mTORC2 inhibitor PP242. Thus, the anti-drug resistance of YPFS+GF in DDP-treated lung cancer cells might be mediated by the down regulation of WT1/MVP axis, as well as the downstream anti-apoptotic pathway of mTORC2/AKT signaling. Herbal medicine is one of the main adjuvant therapies in non-small cell lung cancer, and this novel herbal formula supports the prescription of traditional Chinese medicine in cancer treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA