Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Macro Lett ; 12(7): 835-840, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37294873

RESUMO

Tunable multishape memory polymers offer intriguing opportunities for memorizing multiple temporary shapes with tunable transition temperatures from one material composition. However, such multishape memory effects have been exclusively correlated with the thermomechanical behaviors of polymers, significantly limiting their applications in heat-sensitive scenarios. Here we report a nonthermal tunable multishape memory effect in covalently cross-linked cellulosic macromolecular networks, which spontaneously organize into supramolecular mesophases by water evaporation induced self-assembly. The supramolecular mesophase endows the network with a broad, reversible hygromechanical response combined with a unique moisture memory effect at ambient temperature, enabling diverse multishape memory behaviors (dual-, triple-, and quadruple-shape memory) under highly tunable and independent control of relative humidity (RH) alone. Significantly, such a hygroscopic tunable multishape memory effect readily extends the implications of shape memory polymers beyond the conventional thermomechanical regimes with potential advantages for biomedical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA