Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2403542, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264262

RESUMO

Despite the widespread adoption of emergency coronary reperfusion therapy, reperfusion-induced myocardial injury remains a challenging issue in clinical practice. Following myocardial reperfusion, S100A8/A9 molecules are considered pivotal in initiating and regulating tissue inflammatory damage. Effectively reducing the S100A8/A9 level in ischemic myocardial tissue holds significant therapeutic value in salvaging damaged myocardium. In this study, HA (hemagglutinin)- and RAGE (receptor for advanced glycation end products)- comodified macrophage membrane-coated siRNA nanoparticles (MMM/RNA NPs) with siRNA targeting S100A9 (S100A9-siRNA) are successfully prepared. This nanocarrier system is able to target effectively the injured myocardium in an inflammatory environment while evading digestive damage by lysosomes. In vivo, migration of MMM/RNA NPs to myocardial injury lesions is confirmed in a myocardial ischemia-reperfusion injury (MIRI) mouse model. Intravenous injection of MMM/RNA NPs significantly reduced S100A9 levels in serum and myocardial tissues, further decreasing myocardial infarction area and improving cardiac function. Targeted reduction of S100A8/A9 by genetically modified macrophage membrane-coated nanoparticles may represent a new therapeutic intervention for MIRI.

2.
Smart Med ; 3(2): e20240006, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39188703

RESUMO

Vulnerable atherosclerotic plaques serve as the primary pathological basis for fatal cardiovascular and cerebrovascular diseases. The precise identification and treatment of these vulnerable plaques hold paramount clinical importance in mitigating the incidence of myocardial infarction and stroke. Nevertheless, the identification of vulnerable plaques within the diffuse atherosclerotic plaques dispersed throughout the systemic circulation continues to pose a substantial challenge in clinical practice. Double emulsion solvent evaporation method, specifically the water-in-oil-in-water (W/O/W) technique, was employed to fabricate Fe3O4-based poly (lactic-co-glycolic acid) (PLGA) nanoparticles (Fe3O4@PLGA). Platelet membranes (PM) were extracted through hypotonic lysis, followed by ultrasound-assisted encapsulation onto the surface of Fe3O4@PLGA, resulting in the formation of PM-coated Fe3O4 nanoparticles (PM/Fe3O4@PLGA). Characterization of PM/Fe3O4@PLGA involved the use of dynamic light scattering, transmission electron microscopy, western blotting, and magnetic resonance imaging (MRI). A model of atherosclerotic vulnerable plaques was constructed by carotid artery coarctation and a high-fat diet fed to ApoE-/- (Apolipoprotein E knockout) mice. Immunofluorescence and MRI techniques were employed to verify the functionality of PM/Fe3O4@PLGA. In this study, we initially synthesized Fe3O4@PLGA as the core material. Subsequently, a platelet membrane was employed as a coating for the Fe3O4@PLGA, aiming to enable the detection of vulnerable atherosclerotic plaques through MRI. In vitro, PM/Fe3O4@PLGA not only exhibited excellent biosafety but also showed targeted collagen characteristics and MR imaging performance. In vivo, the adhesion of PM/Fe3O4@PLGA to atherosclerotic lesions was confirmed in a mouse model of vulnerable atherosclerotic plaques. Simultaneously, PM/Fe3O4@PLGA as a novel contrast agent for MRI has shown effective identification of vulnerable atherosclerotic plaques. In terms of safety profile in vivo, PM/Fe3O4@PLGA has not demonstrated significant organ toxicity or inflammatory response in the bloodstream. In this study, we successfully developed a platelet-membrane-coated nanoparticle system for the targeted delivery of Fe3O4@PLGA to vulnerable atherosclerotic plaques. This innovative system allows for the visualization of vulnerable plaques using MRI, thereby demonstrating its potential for enhancing the clinical diagnosis of vulnerable atherosclerotic plaques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA