Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
BMC Med ; 21(1): 268, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488535

RESUMO

BACKGROUND: Tumour-infiltrating lymphocytes (TILs), including T and B cells, have been demonstrated to be associated with tumour progression. However, the different subpopulations of TILs and their roles in breast cancer remain poorly understood. Large-scale analysis using multiomics data could uncover potential mechanisms and provide promising biomarkers for predicting immunotherapy response. METHODS: Single-cell transcriptome data for breast cancer samples were analysed to identify unique TIL subsets. Based on the expression profiles of marker genes in these subsets, a TIL-related prognostic model was developed by univariate and multivariate Cox analyses and LASSO regression for the TCGA training cohort containing 1089 breast cancer patients. Multiplex immunohistochemistry was used to confirm the presence of TIL subsets in breast cancer samples. The model was validated with a large-scale transcriptomic dataset for 3619 breast cancer patients, including the METABRIC cohort, six chemotherapy transcriptomic cohorts, and two immunotherapy transcriptomic cohorts. RESULTS: We identified two TIL subsets with high expression of CD103 and LAG3 (CD103+LAG3+), including a CD8+ T-cell subset and a B-cell subset. Based on the expression profiles of marker genes in these two subpopulations, we further developed a CD103+LAG3+ TIL-related prognostic model (CLTRP) based on CXCL13 and BIRC3 genes for predicting the prognosis of breast cancer patients. CLTRP-low patients had a better prognosis than CLTRP-high patients. The comprehensive results showed that a low CLTRP score was associated with a high TP53 mutation rate, high infiltration of CD8 T cells, helper T cells, and CD4 T cells, high sensitivity to chemotherapeutic drugs, and a good response to immunotherapy. In contrast, a high CLTRP score was correlated with a low TP53 mutation rate, high infiltration of M0 and M2 macrophages, low sensitivity to chemotherapeutic drugs, and a poor response to immunotherapy. CONCLUSIONS: Our present study showed that the CLTRP score is a promising biomarker for distinguishing prognosis, drug sensitivity, molecular and immune characteristics, and immunotherapy outcomes in breast cancer patients. The CLTRP could serve as a valuable tool for clinical decision making regarding immunotherapy.


Assuntos
Neoplasias da Mama , Linfócitos do Interstício Tumoral , Linfócitos do Interstício Tumoral/imunologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Humanos , Prognóstico , Antineoplásicos/uso terapêutico
2.
J Ethnopharmacol ; 317: 116823, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37348798

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional Chinese herbal formula Xuefu Zhuyu decoction (XFZYD) is a classic formula in the category of invigorating blood circulation and resolving blood stasis. It has been proven to improve the neurological and ethological prognosis of traumatic brain injury. XFZYD promotes synaptic and axonal regeneration after traumatic brain injury, which is functionally modulated by the N6-methyladenosine (m6A) modification of RNA. However, the epigenetic effects of XFZYD on m6A modification remain unknown. AIM OF THE STUDY: To explore how XFZYD protects against traumatic brain injury induced by controlled cortical impact (CCI) injury by altering RNA m6A modification. MATERIALS AND METHODS: The modified neurological severity scoring and Morris water maze were performed to evaluate the neuroprotective effects of XFZYD for 14 days and screen the dose. Then, dot blot, western blotting, and methylated RNA immunoprecipitation sequencing (MeRIP-Seq) were used to explore changes in RNA m6A modification in the perilesional cortex. The Metascape platform was used to analyze the Gene Ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome pathway of the differential m6A-tagged genes. Furthermore, MeRIP-qPCR was conducted to quantify differences in the hub differential m6A modification gene brain-derived neurotrophic factor (Bdnf). RESULTS: XFZYD significantly ameliorated the neurological deficits, spatial learning, and memory impairments in rats post-CCI on day 14. XFZYD enhanced the m6A level, and the expression of METTL14 and YTHDC2 in the perilesional cortex of CCI rats. In all three groups, the 3'-untranslated regions and coding sequence were primarily enriched for m6A peaks. XFZYD reversed the increased proportion of 3'-untranslated regions, and the decreased proportion of coding sequence and 5'-untranslated regions post-CCI. Moreover, XFZYD markedly downregulated 41 elevated m6A-tagged transcripts and upregulated 119 decreased m6A-tagged transcripts following CCI. Gene ontology and KEGG pathway analysis revealed that XFZYD-regulated m6A-tagged transcripts were predominantly enriched in synapse assembly, synaptic plasticity, learning or memory, and MAPK signaling pathway. Then, the hub-regulated m6A-tagged gene BDNF was identified. Both the m6A methylation level and the protein level of BDNF were ascended by XFZYD treatment. CONCLUSION: XFZYD improves neurological deficits, spatial learning and memory impairments in rats post-TBI probably through increasing the expression of METTL14 and BDNF in the cortex. Our study highlights a novel post-transcriptional regulation mechanism mediated by herbal medicine for traumatic brain injury treatment.


Assuntos
Lesões Encefálicas Traumáticas , Fator Neurotrófico Derivado do Encéfalo , Ratos , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/metabolismo , RNA/uso terapêutico , Regiões não Traduzidas
3.
Ann Nucl Med ; 37(4): 219-226, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36609801

RESUMO

PURPOSE: Noninvasive methods used in clinic to accurately detect DA neuron loss in diabetic brain injury and diabetic retinopathy have not been reported up to now. 18F-FP-CIT is a promising dopamine transporter (DAT) targeted probe. Our study first applies 18F-FP-CIT PET imaging to assess DA neuron loss in the striatum and retina of T1DM rat model. METHODS: T1DM rat model was induced by a single intraperitoneal injection of streptozotocin (STZ) (65 mg kg-1, ip). 18F-FP-CIT uptake in the striatum and retina was evaluated at 4 weeks, 8 weeks and 12 weeks after STZ injection. The mean standardized uptake value (SUVmean) and the maximum standardized uptake value (SUVmax) were analyzed. Western blot was performed to confirm the DAT protein levels in the striatum and retina. RESULTS: PET/CT results showed that the SUV of 18F-FP-CIT was significantly reduced in the diabetic striatum and retina compared with the normal one from 4-week to 12-week (p < 0.0001). Western blots showed that DAT was significantly lower in the diabetic striatum and retina compared to the normal one for all three time points (p < 0.05). The results from Western blots confirmed the findings in PET imaging studies. CONCLUSIONS: DA neuron loss in the striatum and retina of T1DM rat model can be non-invasively detected with PET imaging using 18F-FP-CIT targeting DAT. 18F-FP-CIT PET imaging may be a useful tool used in clinic for DR and diabetic brain injury diagnosis in future. The expression level of DAT in striatum and retina may act as a new biomarker for DR and diabetic brain injury diagnosis.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Retinopatia Diabética , Retina , Animais , Ratos , Diabetes Mellitus Experimental/diagnóstico por imagem , Diabetes Mellitus Tipo 1/diagnóstico por imagem , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons/métodos , Retina/diagnóstico por imagem , Retina/metabolismo , Tropanos , Retinopatia Diabética/diagnóstico por imagem
5.
Cancers (Basel) ; 14(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36428599

RESUMO

Immune checkpoint therapy (ICT) is among the widely used treatments for breast cancer (BC), but most patients do not respond to ICT and the availability of the predictive biomarkers is limited. Emerging evidence indicates that tissue-resident macrophages (RTMs) inhibit BC progression, suggesting that their presence may predict immunotherapy response. A single-cell RNA-sequencing analysis of BC samples was performed to identify five RTM clusters with a mixed phenotype of M1-M2 macrophages. The comprehensive results showed that a high score of each RTM cluster was associated with a high infiltration of CD8+ T cells, M1 macrophages, and dendritic cells, and improved overall survival. In addition, a low score of each RTM cluster was associated with a high infiltration of M0 macrophages, naïve B cells and Tregs, and poor overall survival. Gene signatures from each RTM cluster were significantly enriched in responders compared with nonresponders. Each RTM cluster expression was significantly higher in responders than in nonresponders. The analyses of bulk RNA-seq datasets of BC samples led to identification and validation of a gene expression signature, named RTM.Sig, which contained the related genes of RTM clusters for predicting response to immunotherapy. This study highlights RTM.Sig could provide a valuable tool for clinical decisions in administering ICT.

6.
J Mol Neurosci ; 72(4): 910-922, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35099722

RESUMO

Meranzin hydrate (MH) is a frequently used antidepressant drug in China; however it underlying mechanism remains unknown. In this study, we aimed to explore whether MH could ameliorate depression-like behavior in rats by regulating the competitive endogenous RNA (ceRNA) network. We developed a depression-like rat model using an unpredictable chronic mild stress (UCMS) protocol, and the differentially expressed lncRNAs, miRNAs, and mRNAs were identified between the model group and MH group. Then, a ceRNA network responding to MH treatment was constructed by their corresponding relationships in the databases. Finally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to explore molecular mechanisms associated with MH treatment. The study indicated that rats in the model group showed loss of weight and deteriorated behavior in behavior tests compared with rats in the normal group. A total of 826 lncRNAs, 121 miRNAs, and 954 mRNAs were differentially expressed in the hippocampus of UCMS rats after MH treatment. In addition, 13 miRNAs were selected, and 12 of them were validated in the hippocampus by qRT-PCR. Then, we predicted upstream lncRNAs and downstream mRNAs of the validated miRNAs and interacted with the results of microarrays. Eventually, a lncRNA-miRNA-mRNA regulatory network, responding to MH treatment, was constructed based on the 314 lncRNAs, 11 miRNAs, and 221 mRNAs. KEGG pathways suggested that these genes may be highly related to Wnt signaling, axon guidance, and MAPK signaling pathways. All these results suggest that MH may be a potential representative compound for the treatment of depression, and its mechanism of action is related to the ceRNA modification.


Assuntos
MicroRNAs , RNA Longo não Codificante , Animais , Cumarínicos , Depressão/tratamento farmacológico , Depressão/genética , Redes Reguladoras de Genes , Hipocampo/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos
7.
Comput Struct Biotechnol J ; 19: 1002-1013, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33613866

RESUMO

Traumatic brain injury (TBI) has become a leading cause of mortality, morbidity and disability worldwide. Hydroxysafflor yellow A (HSYA) is effective in treating TBI, but the potential mechanisms require further exploration. We aimed to reveal the mechanisms of HSYA against acute TBI by an integrated strategy combining metabolomics with network pharmacology. A controlled cortical impact (CCI) rat model was established, and neurological functions were evaluated. Metabolomics of brain tissues was used to identify differential metabolites, and the metabolic pathways were enriched by MetaboAnalyst. Then, network pharmacology was applied to dig out the potential targets against TBI induced by HSYA. The integrated network of metabolomics and network pharmacology was constructed based on Cytoscape. Finally, the obtained key targets were verified by molecular docking. HSYA alleviated the neurological deficits of TBI. Fifteen potentially significant metabolites were found to be involved in the therapeutic effects of HSYA against acute TBI. Most of these metabolites were regulated to recover after HSYA treatment. We found 10 hub genes according to network pharmacology, which was partly consistent with the metabolomics findings. Further integrated analysis focused on 4 key targets, including NOS1, ACHE, PTGS2 and XDH, as well as their related core metabolites and pathways. Molecular docking showed high affinities between key targets and HSYA. Region-specific metabolic alterations in the cortex and hippocampus were illuminated. This study reveals the complicated mechanisms of HSYA against acute TBI. Our work provides a novel paradigm to identify the potential mechanisms of pharmacological effects derived from a natural compound.

8.
Biomed Chromatogr ; 34(9): e4872, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32358897

RESUMO

Xuefu Zhuyu Decoction (XFZYD) is a traditional Chinese medicine prescription used for the clinical treatment of traumatic brain injury (TBI). The purpose of this work was to develop a sensitive and rapid UHPLC-MS/MS method to simultaneously study the pharmacokinetics of nimodipine and eight components of XFZYD, namely, amygdalin, hydroxysafflor yellow A, rutin, liquiritin, narirutin, naringin, neohesperidin and saikosaponin A, in rats with and without TBI. Multiple reaction monitoring was highly selective in the detection of nine analytes and the internal standard without obvious interference. The calibration curves displayed good linearity (r > 0.99) over a wide concentration range. The mean absolute recoveries of the nine analytes were 85-106%, and all matrix effects were in the range 80-120%. The intra- and inter-day precision and accuracy were acceptable (RSD, <15%; RE%, ±20%). The validated method was successfully applied to compare the pharmacokinetics in four experimental groups, including control rats orally administered XFZYD and TBI model rats orally administered XFZYD, XFZYD and nimodipine, or nimodipine alone. The results showed that herb-drug interactions occurred between XFZYD and nimodipine in the treatment of TBI, nimodipine affected the pharmacokinetics of XFZYD, and XFZYD affected the absorption, distribution and excretion of nimodipine in vivo.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas , Nimodipina , Espectrometria de Massas em Tandem/métodos , Administração Oral , Animais , Lesões Encefálicas Traumáticas , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacocinética , Flavonoides/sangue , Flavonoides/química , Flavonoides/farmacocinética , Glicosídeos/sangue , Glicosídeos/química , Glicosídeos/farmacocinética , Modelos Lineares , Masculino , Nimodipina/administração & dosagem , Nimodipina/sangue , Nimodipina/farmacocinética , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
J Ethnopharmacol ; 258: 112826, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32298754

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Xuefu Zhuyu decoction (XFZYD) is a traditional Chinese herbal prescription. It is effective in treating traumatic brain injury (TBI). However, the underlying molecular mechanisms remain unclear. AIM OF THE STUDY: This study aimed to reveal the possible mechanisms of XFZYD in treating acute TBI through proteomics clues. MATERIALS AND METHODS: Controlled Cortical Impact (CCI) rats were given gavage administration of XFZYD (9 g/kg/d) or distilled water (equal volume) for three days. The Modified Neurological Severity Score (mNSS), brain water content, HE staining, Nissl staining and immunohistochemistry were performed to assess the effects of XFZYD for TBI treatment. Additionally, tandem mass tag-based (TMT) quantitative proteomics technology was applied to detect proteins of brain cortex. Bioinformatics analysis including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Protein-protein interaction (PPI) networks were used to analyze differentially expressed proteins (DEPs). Bioinformatics Analysis Tool for Molecular mechanism of TCM (BATMAN-TCM) was conducted to anchor diseases and pathways. Besides, western blotting and immunofluorescence were exerted to verify related proteins. RESULTS: XFZYD improved neurologic functions, reduced encephaledema and ameliorated cell morphology around the injured area in CCI rats. A total of 6099 proteins were identified with false discovery rate (FDR) < 1%. Overlapping DEPs (105 DEPs) were identified (295 DEPs and 804 DEPs in CCI/Sham or XFZYD/CCI group, respectively). Of these DEPs, 17 were regulated by XFZYD. Bioinformatics analysis showed that the 17 DEPs were predominantly related to platelet activation and PI3K-Akt signaling pathway. Next, PLG and CD34 were verified with molecular biotechnology. CONCLUSIONS: XFZYD exerts therapeutic effects through multi-pathways regulation in the treatment of TBI. This work may provide proteomics clues for the continuation of research on TBI treatment with XFZYD.


Assuntos
Lesões Encefálicas Traumáticas/prevenção & controle , Medicamentos de Ervas Chinesas/farmacologia , Proteômica , Animais , Lesões Encefálicas Traumáticas/fisiopatologia , Biologia Computacional , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
11.
Xenobiotica ; 50(5): 545-551, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31524030

RESUMO

Hydroxysafflor yellow A (HSYA) is the most pharmaceutically relevant compound in Xuebijing (XBJ) for traumatic brain injury (TBI) treatment. We aimed to investigate biofluids pharmacokinetics of HSYA from XBJ to ensure the drug safety and to guide the clinical use.A sensitive, rapid and reliable liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was applied to investigate pharmacokinetics of HSYA in TBI patients after intravenous administration of XBJ. Non-compartmental methods using DAS 3.0 software were applied to analyse the pharmacokinetic parameters.A similar half-life (Plasmat1/2: 14.55 ± 3.51 h vs. CSFt1/2: 15.73 ± 3.63) was observed. HSYA reached the peak level rapidly, but exhibited a strongly slow absorption phase from blood to cerebrospinal fluid (CSF, PlasmaTmax: 0.69 ± 0.26 h vs. CSFTmax: 4.0 ± 2.62 h). HSYA exhibited much higher Cmax (PlasmaCmax: 9342.76 ± 2489.23 µg/L vs. CSFCmax: 98.08 ± 14.51 µg/L) and AUC0-t (PlasmaAUC0-t: 57490.5 ± 5560.3 µg h/L vs. CSFAUC0-t: 1851.6 ± 269.1 µg h/L), yet a shorter CL (PlasmaCL: 0.02 ± 0.002 L/h/kg vs. CSFCL: 0.55 ± 0.01 L/h/kg) in plasma than in CSF. The AUCCSF/AUCplasma of HSYA was almost 3.37%.In summary, the results demonstrate that part of HSYA come across blood-brain barrier after XBJ administration. This study provides evidence for better understanding the pharmacokinetics and potential for clinical guidance of XBJ for TBI treatment.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Chalcona/análogos & derivados , Medicamentos de Ervas Chinesas/metabolismo , Quinonas/metabolismo , Administração Intravenosa , Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/líquido cefalorraquidiano , Chalcona/sangue , Chalcona/líquido cefalorraquidiano , Chalcona/metabolismo , Humanos , Farmacocinética , Quinonas/sangue , Quinonas/líquido cefalorraquidiano
12.
J Ethnopharmacol ; 245: 112149, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31401321

RESUMO

It has been widely reported that Xuefu Zhuyu decoction (XFZYD), a traditional Chinese medicine, is effective in the treatment of traumatic brain injury (TBI). However, the mechanism of the therapeutic process is still not fully understood. Metabolomic technique can be used to explore the mechanisms underlying the treatment of TBI with XFZYD. The purpose of this work was to investigate the metabolic characteristics of blood samples from rats with and without XFZYD treatment and the dynamic changes in metabolite profiles on days 1, 3, 7, 14 and 21 after injury (within the severe phase of TBI) based on untargeted UPLC-ESI-IT-TOF-MS analysis. Pattern recognition, clustering analysis and metabolic pathway analysis were used to analyse the metabolomic data of three groups (a sham-operated group, a TBI model, and an XFZYD-treated TBI model). The results showed that XFZYD reversed the abnormalities in the levels of small-molecule metabolites (such as L-acetylcarnitine, L-tryptophan, indoleacrylic acid, γ-aminobutyric acid, hypotaurine, LysoPC(18:1)(11Z), creatine, L-phenylalanine and L-leucine) in TBI rats through six metabolic pathways (including phenylalanine, tyrosine and tryptophan biosynthesis; phenylalanine metabolism; valine, leucine and isoleucine biosynthesis; taurine and hypotaurine metabolism; tryptophan metabolism; and alanine, aspartate and glutamate metabolism) involved in the therapy process. XFZYD regulated the metabolic disorders of endogenous markers by the possible mechanisms of neuroprotection, energy metabolism, inflammatory response and oxidative stress. This study revealed the holistic and dynamic metabolic changes caused by XFZYD in rats with TBI and provided important research methods and approaches for exploring the multiple metabolites and metabolic pathways involved in the therapeutic effect of XFZYD on TBI.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Redes e Vias Metabólicas/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Animais , Biomarcadores/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Cromatografia Líquida de Alta Pressão , Masculino , Metabolômica , Ratos Sprague-Dawley , Espectrometria de Massas por Ionização por Electrospray
13.
Psychosom Med ; 81(1): 100-109, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30216226

RESUMO

OBJECTIVE: Zhike-Houpu herbal pair (ZKHPHP) is a well-known Chinese medicine to treat gastrointestinal motility dysfunction. Recently, many researchers have found that some of the compounds of ZKHPHP such as meranzin hydrate and magnolol have antidepressant effects. However, little is known about the antidepressant mechanism of ZKHPHP. Therefore, the main aim of the study is to evaluate the antidepressant-like effects of ZKHPHP and its possible mechanism of action on 5-hydroxytryptamine receptor 1A (HTR1A) in the hippocampus CA1 region in rats exposed to chronic unpredictable mild stress. METHODS: Male Sprague Dawley rats were randomly divided into the following six groups: normal, model, ZKHPHP (3 g/kg), ZKHPHP (10 g/kg), ZKHPHP (20 g/kg), and ZKHPHP (30 g/kg); n = 8 per group. We exposed the rats to chronic unpredictable mild stress and then assessed antidepressant-like effects of ZKHPHP by measuring weight change, observing the open-field test, and measuring sucrose water consumption. The antidepressant mechanism was examined by measuring the effect of ZKHPHP on HTR1A protein expression and HTR1A mRNA expression in the hippocampus CA1 region by using immunohistochemistry analysis, Western blotting, and real-time reverse transcription-polymerase chain reaction. RESULTS: ZKHPHP (10 or 20 g/kg) reduced the incidence of depressive-like behaviors and increased HTR1A protein and HTR1A mRNA expression in the hippocampus CA1 in rats displaying depressive behavior, whereas ZKHPHP (3 or 30 g/kg) had no obvious effect on the measured depression indicators. CONCLUSIONS: These data show that ZKHPHP has antidepressant-like effects based on a chronic unpredictable mild stress-induced depression model in rats. ZKHPHP may be attractive as an antidepressant because of its beneficial effects on depression and the absence of gastrointestinal dysregulation, which is a frequently observed unintended effect of many commonly used antidepressive medications.


Assuntos
Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Depressão/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Magnolia , Receptor 5-HT1A de Serotonina/efeitos dos fármacos , Receptor 5-HT1A de Serotonina/metabolismo , Estresse Psicológico/complicações , Animais , Antidepressivos/administração & dosagem , Depressão/etiologia , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/administração & dosagem , Masculino , Medicina Tradicional Chinesa , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
14.
Aging (Albany NY) ; 10(4): 775-788, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29706607

RESUMO

Alzheimer's disease (AD) is the most common form of dementia worldwide. Accumulating evidence indicates that non-coding RNAs are strongly implicated in AD-associated pathophysiology. However, the role of these ncRNAs remains largely unknown. In the present study, we used microarray analysis technology to characterize the expression patterns of circular RNAs (circRNAs), microRNAs (miRNAs), and mRNAs in hippocampal tissue from Aß1-42-induced AD model rats, to integrate interaction data and thus provide novel insights into the mechanisms underlying AD. A total of 555 circRNAs, 183 miRNAs and 319 mRNAs were identified to be significantly dysregulated (fold-change ≥ 2.0 and p-value < 0.05) in the hippocampus of AD rats. Quantitative real-time polymerase chain reaction (qRT-PCR) was then used to validate the expression of randomly-selected circRNAs, miRNAs and mRNAs. Next, GO and KEGG pathway analyses were performed to further investigate ncRNAs biological functions and potential mechanisms. In addition, we constructed circRNA-miRNA and competitive endogenous RNA (ceRNA) regulatory networks to determine functional interactions between ncRNAs and mRNAs. Our results suggest the involvement of different ncRNA expression patterns in the pathogenesis of AD. Our findings provide a novel perspective for further research into AD pathogenesis and might facilitate the development of novel therapeutics targeting ncRNAs.


Assuntos
Doença de Alzheimer/genética , Hipocampo/metabolismo , MicroRNAs/biossíntese , RNA Mensageiro/biossíntese , RNA/biossíntese , Peptídeos beta-Amiloides/toxicidade , Animais , Regulação da Expressão Gênica , Masculino , Análise em Microsséries , RNA Circular , RNA não Traduzido/biossíntese , Ratos , Ratos Sprague-Dawley , Transcriptoma
15.
Biomed Res Int ; 2018: 3951783, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30596090

RESUMO

Traumatic brain injury (TBI) is a critical public health and socioeconomic problem worldwide. The herb pair Astragali Radix (AR)-Radix Angelica Sinensis (RAS) is a common prescribed herbal formula or is added to other Chinese medicine prescriptions for traumatic brain injury (TBI) treatment. However, the underlying mechanisms are unclear. In this study, we aimed to explore the active ingredients and action targets of AR-RAS based on the combined methods of network pharmacology prediction and experimental verification. Furthermore, the corresponding potential mechanisms of "multicomponents, multitargets, and multipathways" were disclosed. Methods. A network pharmacology approach including ADME (absorption, distribution, metabolism, and excretion) filter analysis, target prediction, known therapeutic targets collection, Gene Ontology (GO), pathway enrichment analysis, and network construction was used in this study. Further verification experiments were performed to reveal the therapeutic effects of AR-RAS in a rat model of TBI. Results. The comprehensive systematic approach was to successfully identify 14 bioactive ingredients in AR-RAS, while 33 potential targets hit by these ingredients related to TBI. Based on GO annotation analysis, multiple biological processes were significantly regulated by AR-RAS. In addition, 89 novel signaling pathways (P<0.05) underlying the effects of AR-RAS for TBI treatment were identified by DAVID. The neurotrophin signaling pathway was suggested as the major related pathway targeted by AR-RAS to improve axonal growth. The animal experiment confirmed that AR-RAS significantly induced tissue recovery and improved neurological deficits on the 14th day (P<0.01). Treatment with AR-RAS markedly reduced the protein and mRNA expression level of NogoA in the hippocampus of TBI rats. Conclusion. Our work illuminates the "multicompounds, multitargets, and multipathways" curative action of AR-RAS in the treatment of TBI by network pharmacology. The animal experiment verifies the effects of AR-RAS on neurological function improvement and axonal outgrowth via downregulation of NogoA expression, providing a theoretical basis for further research on treatment of TBI.


Assuntos
Angelica sinensis/química , Astrágalo/química , Lesões Encefálicas Traumáticas/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Animais , Astragalus propinquus , Axônios/efeitos dos fármacos , Medicamentos de Ervas Chinesas/química , Masculino , Medicina Tradicional Chinesa/métodos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
16.
Oncotarget ; 8(55): 94692-94710, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29212259

RESUMO

Xuefu Zhuyu Decoction (XFZY), an important traditional Chinese herbal formula, has been reported effective on traumatic brain injury (TBI) in rats. However, its cerebral protection mechanism has not been clarified at the metabolic level. This work aims to explore the global metabolic characteristics of XFZY in rats during the acute phase of TBI on days 1 and 3. A plasma metabolomics method based on gas chromatography-mass spectrometry coupled with univariate analysis and multivariate statistical analysis was performed in three groups (Sham, Vehicle, XFZY). Then, a pathway analysis using MetaboAnalyst 3.0 was performed to illustrate the pathways of therapeutic action of XFZY in TBI. XFZY treatment attenuates neurological dysfunction and cortical lesion volume post-injury on day 3, and reverses the plasma metabolite abnormalities (glutamic acid, lactic acid, 3-hydroxybutyric acid, and ribitol, etc.). These differential metabolites are mainly involved in D-glutamine and D-glutamate metabolism, alanine, aspartate and glutamate metabolism, and inositol phosphate metabolism. Our study reveals potential biomarkers and metabolic networks of acute TBI and neuroprotection effects of XFZY, and shows this metabolomics approach with MetaboAnalyst would be a feasible way to systematically study therapeutic effects of XFZY on TBI.

17.
PLoS One ; 12(8): e0182025, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28771528

RESUMO

Traumatic brain injury (TBI) is a major cause of mortality and disability worldwide. We validated the utility of plasma metabolomics analysis in the clinical diagnosis of acute TBI in a rat model of controlled cortical impact (CCI) using gas chromatography/mass spectrometry (GC/MS). Thirty Sprague-Dawley rats were randomly divided into two groups of 15 rats each: the CCI group and sham group. Blood samples were obtained from the rats within the first 24 h after TBI injury. GC/MS measurements were performed to evaluate the profile of acute TBI-induced metabolic changes, resulting in the identification of 45 metabolites in plasma. Principal component analysis, partial least squares-discriminant analysis, orthogonal partial least square discriminant analysis using hierarchical clustering and univariate/multivariate analyses revealed clear differences in the plasma metabolome between the acute CCI group and the sham group. CCI induced distinctive changes in metabolites including linoleic acid metabolism, amino acid metabolism, galactose metabolism, and arachidonic acid metabolism. Specifically, the acute CCI group exhibited significant alterations in proline, phosphoric acid, ß-hydroxybutyric acid, galactose, creatinine, L-valine, linoleic acid and arachidonic acid. A receiver operating characteristic curve analysis showed that the above 8 metabolites in plasma could be used as the potential biomarkers for the diagnosis of acute TBI. Furthermore, this study is the first time to identify the galactose as a biomarker candidate for acute TBI. This comprehensive metabolic analysis complements target screening for potential diagnostic biomarkers of acute TBI and enhances predictive value for the therapeutic intervention of acute TBI.


Assuntos
Biomarcadores/sangue , Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas/sangue , Metaboloma , Metabolômica/métodos , Animais , Lesões Encefálicas/diagnóstico , Lesões Encefálicas Traumáticas/diagnóstico , Masculino , Ratos , Ratos Sprague-Dawley
18.
Artigo em Inglês | MEDLINE | ID: mdl-28573223

RESUMO

BACKGROUND: Bao-Xin-Tang (BXT) is a traditional Chinese medicinal formula used for the treatment of coronary heart disease and known to have favorable therapeutic benefits. The current study was designed to determine whether BXT has a cardioprotective role for acute myocardial infarction. The underlying mechanisms were also explored. MATERIALS AND METHODS: The Sprague-Dawley rat model of acute myocardial infarction was established by occluding the left anterior descending branch of the coronary artery. After a 3-h ischemic period, we determined the myocardial infarction size, inflammatory components, and antioxidant activities. RESULTS: The data showed that BXT could reduce the infarction size and lower the levels of C-reactive protein, interleukin-6, and myeloperoxidase, and increase the activities of superoxide dismutase and the anti-inflammatory cytokine, interleukin-10. These results indicate that administration of BXT, following acute myocardial infarction, could reduce infarct size. CONCLUSION: The effects of BXT may be related to its anti-inflammatory and anti-oxidative properties.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Cardiotônicos/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Fitoterapia , Doença Aguda , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Proteína C-Reativa/metabolismo , Cardiotônicos/farmacologia , Vasos Coronários , Medicamentos de Ervas Chinesas/farmacologia , Infarto/prevenção & controle , Inflamação/sangue , Inflamação/prevenção & controle , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Masculino , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/sangue , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo
19.
Oncotarget ; 8(26): 42648-42663, 2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28487495

RESUMO

Neuroinflammation is central to the pathogenesis of Alzheimer's disease (AD). We previously showed that Naoling decoction (NLD), a traditional Chinese medicine, was effective against AD, acting by inhibiting expression of IL-1ß and IL-6. In the present study, we generated the rat model of AD by injecting Aß1-42 peptide intracerebroventricularly and evaluated the dose-dependent effects of NLD treatment. The NLD-treated rats exhibited significant improvements in cognitive function as evaluated by the Morris water maze test. Golgi-Cox staining revealed that NLD treatment dose-dependently increased dendritic spines in the CA1 region, which were diminished in vehicle-treated rats. Further, NLD treatment normalized hippocampal Chromogranin A levels, which were elevated by Aß1-42 induction. NLD also attenuated activation of microglia and astrocytes induced by Aß1-42. Subsequently, NLD dose-dependently reduced levels TNF-α, IL-1ß and IL-6 by inhibiting the NF-κB signaling pathway and the ASC-dependent inflammasome in the hippocampus. These findings reveal that NLD is a promising therapeutic agent that exerts inhibitory effects at multiple sites within the neuroinflammatory network induced in AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Medicina Tradicional Chinesa/métodos , Doença de Alzheimer/patologia , Animais , Cognição , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/patologia , Masculino , Ratos
20.
BMC Complement Altern Med ; 17(1): 140, 2017 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-28264680

RESUMO

BACKGROUND: The brain is secondarily harmed by pathological, physiological, and biological reactions that are caused by traumatic brain injury (TBI). Rhein, a significant composition of Rhubarb, is a well-known traditional Chinese treatment method and has a strong oxidation-resisting characteristic, but Rhein's mechanism remains unclear. METHODS: This study aimed to identify Rhein in the brain tissues of TBI model of rats, and confirm whether Rhein induced an antioxidative effect similar to its parent medicine, Rhubarb. First, the ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was applied to identify Rhein in the brain tissue of the controlled cortical impact (CCI) rats after intra-gastric administration of Rhubarb. Further, for the purpose of calculating the oxidant stress of the CCI rats, the malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), and glutathione disulfide (GSSG), as well as the proportion of glutathione (GSH)/GSSG were measured in the brain tissues. RESULTS: The results showed that Rhein was absorbed in the brain tissues of CCI rats. Rhubarb and rhein elevated the SOD, CAT activities, GSH level, and GSH/GSSG ratio, and diminished the MDA and GSSG levels. CONCLUSION: The data demonstrated that Rhubarb and Rhein had the potential to be used as a neuroprotective drug for TBI, and that Rhein induced an antioxidative effect similar to its parent medicine, Rhubarb.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Encéfalo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Rheum/química , Animais , Encéfalo/enzimologia , Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Masculino , Fármacos Neuroprotetores/química , Extratos Vegetais/química , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA