Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Bone Oncol ; 44: 100520, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38261934

RESUMO

Background and objective: Due to their aggressive nature and poor prognosis, malignant femoral bone tumors present considerable hurdles. Early treatment commencement is essential for enhancing vital and practical outcomes. In this investigation, deep learning algorithms will be used to analyze magnetic resonance imaging (MRI) data to identify bone tumors that are malignant. Methodology: The study cohort included 44 patients, with ages ranging from 17 to 78 (22 women and 22 males). To categorize T1 and T2 weighted MRI data, this paper presents an improved DenseNet network model for the classification of bone tumor MRI, which is named GHA-DenseNet. Based on the original DenseNet model, the attention module is added to solve the problem that the deep convolutional model can reduce the loss of key features when capturing the location and content information of femoral bone tumor tissue due to the limitation of local receptive field. In addition, the sparse connection mode is used to prune the connection mode of the original model, so as to remove unnecessary and retain more useful fast connection mode, and alleviate the overfitting problem caused by small dataset size and image characteristics. In a clinical model designed to anticipate tumor malignancy, the utilization of T1 and T2 classifier output values, in combination with patient-specific clinical information, was a crucial component. Results: The T1 classifier's accuracy during the training phase was 92.88% whereas the T2 classifier's accuracy was 87.03%. Both classifiers demonstrated accuracy of 95.24% throughout the validation phase. During training and validation, the clinical model's accuracy was 82.17% and 81.51%, respectively. The clinical model's receiver operating characteristic (ROC) curve demonstrated its capacity to separate classes. Conclusions: The proposed method does not require manual segmentation of MRI scans because it makes use of pretrained deep learning classifiers. These algorithms have the ability to predict tumor malignancy and shorten the diagnostic and therapeutic turnaround times. Although the procedure only needs a little amount of radiologists' involvement, more testing on a larger patient cohort is required to confirm its efficacy.

2.
Front Neuroinform ; 16: 997282, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387584

RESUMO

Music plays an essential role in human life and can act as an expression to evoke human emotions. The diversity of music makes the listener's experience of music appear diverse. Different music can induce various emotions, and the same theme can also generate other feelings related to the listener's current psychological state. Music emotion recognition (MER) has recently attracted widespread attention in academics and industry. With the development of brain science, MER has been widely used in different fields, e.g., recommendation systems, automatic music composing, psychotherapy, and music visualization. Especially with the rapid development of artificial intelligence, deep learning-based music emotion recognition is gradually becoming mainstream. Besides, electroencephalography (EEG) enables external devices to sense neurophysiological signals in the brain without surgery. This non-invasive brain-computer signal has been used to explore emotions. This paper surveys EEG music emotional analysis, involving the analysis process focused on the music emotion analysis method, e.g., data processing, emotion model, and feature extraction. Then, challenging problems and development trends of EEG-based music emotion recognition is proposed. Finally, the whole paper is summarized.

3.
Front Physiol ; 11: 604764, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329057

RESUMO

As a long-standing chronic disease, Temporal Lobe Epilepsy (TLE), resulting from abnormal discharges of neurons and characterized by recurrent episodic central nervous system dysfunctions, has affected more than 70% of drug-resistant epilepsy patients across the world. As the etiology and clinical symptoms are complicated, differential diagnosis of TLE mainly relies on experienced clinicians, and specific diagnostic biomarkers remain unclear. Though great effort has been made regarding the genetics, pathology, and neuroimaging of TLE, an accurate and effective diagnosis of TLE, especially the TLE subtypes, remains an open problem. It is of a great importance to explore the brain network of TLE, since it can provide the basis for diagnoses and treatments of TLE. To this end, in this paper, we proposed a multi-head self-attention model (MSAM). By integrating the self-attention mechanism and multilayer perceptron method, the MSAM offers a promising tool to enhance the classification of TLE subtypes. In comparison with other approaches, including convolutional neural network (CNN), support vector machine (SVM), and random forest (RF), experimental results on our collected MEG dataset show that the MSAM achieves a supreme performance of 83.6% on accuracy, 90.9% on recall, 90.7% on precision, and 83.4% on F1-score, which outperforms its counterparts. Furthermore, effectiveness of varying head numbers of multi-head self-attention is assessed, which helps select the optimal number of multi-head. The self-attention aspect learns the weights of different signal locations which can effectively improve classification accuracy. In addition, the robustness of MSAM is extensively assessed with various ablation tests, which demonstrates the effectiveness and generalizability of the proposed approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA