RESUMO
BACKGROUND AND OBJECTIVE: Since its initial report by James Parkinson in 1817, Parkinson's disease (PD) has remained a central subject of research and clinical advancement. The disease is estimated to affect approximately 1% of adults aged 60 and above. Deep brain stimulation, emerging as an alternative therapy for end-stage cases, has offered a lifeline to numerous patients. This review aimed to analyze publications pertaining to the impact of deep brain stimulation on the motor pathway in patients with PD over the last decade. METHODS: Data were obtained from the Web of Science Core Collection through the library of Huazhong University of Science and Technology (China). The search strategy encompassed the following keywords: "deep brain stimulation", "Parkinson's disease", "motor pathway", and "human", from January 1, 2012, to December 1, 2022. Additionally, this review visualized the findings using the Citespace software. RESULTS: The results indicated that the United States, the United Kingdom, Germany, and China were the primary contributors to this research field. University College London, Capital Medical University, and Maastricht University were the top 3 research institutions in the research area. Tom Foltynie ranked first with 6 publications, and the journals of Brain and Brain Stimulation published the greatest number of relevant articles. The prevailing research focal points in this domain, as determined by keywords "burst analysis", "encompassed neuronal activity", "nucleus", "hyper direct pathway", etc. CONCLUSION: This study has provided a new perspective through bibliometric analysis of the deep brain stimulation therapy for treating patients with PD, which can shed light on future research to advance our comprehension of this particular field of study.
Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Humanos , Bibliometria , Encéfalo , Vias Eferentes , Doença de Parkinson/terapiaRESUMO
OBJECTIVE: To investigate glucose metabolic alterations in cerebral cortical subareas using 18F-labeled glucose derivative fluorodeoxyglucose (FDG) micro-positron emission tomography (PET) scanning in a rat renal ischemia/reperfusion (RIR) model. METHODS: Small-animal PET imaging in vivo was performed with 18F-labeled FDG as a PET tracer to identify glucose metabolic alterations in cerebral cortical subregions using a rat model of RIR. RESULTS: We found that the average standardized uptake value (SUVaverage) of the cerebral cortical subareas in the RIR group was significantly increased compared to the sham group (P<0.05). We also found that glucose uptake in different cortical subregions including the left auditory cortex, right medial prefrontal cortex, right para cortex, left retrosplenial cortex, right retrosplenial cortex, and right visual cortex was significantly increased in the RIR group (P<0.05), but there was no significant difference in the SUVaverage of right auditory cortex, left medial prefrontal cortex, left para cortex, and left visual cortex between the two groups. CONCLUSION: The 18F-FDG PET data suggests that RIR causes a profound shift in the metabolic machinery of cerebral cortex subregions.
Assuntos
Córtex Cerebral/diagnóstico por imagem , Glucose/metabolismo , Nefropatias/diagnóstico por imagem , Traumatismo por Reperfusão/diagnóstico por imagem , Animais , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Fluordesoxiglucose F18/administração & dosagem , Nefropatias/etiologia , Nefropatias/metabolismo , Masculino , Tomografia por Emissão de Pósitrons , Ratos , Traumatismo por Reperfusão/metabolismoRESUMO
Myocardial ischemia-reperfusion injury (MIRI) is a significant problem in clinical cardiology, and refers to a more serious myocardial injury caused by blood recanalization after a period of myocardial ischemia, as compared with injury caused by vascular occlusion. The spinal cord, as the primary afferent and efferent center of cardiac sensory and sympathetic nerve fibres, has received increased attention in recent years with regards to the regulation of MIRIs. Previous studies have revealed that MIRI has a strong correlation with the abnormal expression of long non-coding (lnc)RNAs in the myocardium; however, there are limited reports on the effects of the altered expression of lncRNAs in the spinal cord following MIRI. To investigate the expression patterns of lncRNAs in the spinal cord after MIRI and their potential role in the early stage of reperfusion, a MIRI model was established in rats. After 30 min of myocardial ischemia and 2 h of reperfusion, the upper thoracic spinal cord tissues were immediately dissected and isolated. lncRNAs and mRNAs in spinal cord tissues were screened using transcriptome sequencing technology, and the expression of several highly deregulated mRNAs, including Frs3, Zfp52, Dnajc6, Nedd4l, Tep1, Myef2, Tgfbr1, Fgf12, Mef2c, Tfdp1 and lncRNA, including ENSRNOT00000080713, ENSRNOT00000090564, ENSRNOT00000082588, ENSRNOT00000091080, ENSRNOT00000091570, ENSRNOT00000087777, ENSRNOT00000082061, ENSRNOT00000091108, ENSRNOT00000087028, ENSRNOT00000086475, were further validated via reverse transcription-quantitative PCR. The number of altered expressed lncRNAs was 126, among which there were 41 upregulated probe sets and 85 downregulated sets. A total of 470 mRNAs were differentially expressed, in which 231 probe sets were upregulated and 239 were downregulated. Gene Ontology analysis indicated that dysregulated transcripts related to biological processes were mainly associated with 'cell-cell signaling'. Moreover, pathway analysis demonstrated significant changes in the 'PI3K/Akt signaling pathway' and the 'p53 signaling pathway'. Thus, the altered expression of lncRNAs in the spinal cord may be of considerable importance in the process of MIRI. The present results could provide an insight into the potential roles and mechanism of lncRNAs during the early stage of reperfusion.
RESUMO
The high incidence of patients with chronic itch highlights the importance of fundamental research. Recent advances in the interface of gut microbiota have shed new light into exploring this phenomenon. However, it is unknown whether gut microbiota plays a role in chronic itch in rodents with or without cognitive dysfunction. In this study, the role of gut microbiota in diphenylcyclopropenone (DCP)-evoked chronic itch was investigated in mice and hierarchical cluster analysis of novel object recognition test (ORT) results were used to classify DCP-evoked itch model in mice with or without cognitive dysfunction (CD)-like phenotype and 16S ribosomal RNA (rRNA) gene sequencing was used to compare gut bacterial composition between CD (Susceptible) and Non-CD phenotypes (Unsusceptible) in chronic itch mice. Results showed that the microbiota composition was significantly altered by DCP-evoked chronic itch and chronic itch induced novel object recognition-related CD. However, abnormal gut microbiota composition induced by chronic itch may not be correlated with novel object recognition-related CD.
RESUMO
BACKGROUND: Recent studies have demonstrated a complex and dynamic neural crosstalk between the heart and brain. A heart-brain interaction has been described regarding cardiac ischemia, but the cerebral metabolic mechanisms involved are unknown. METHODS: Male Sprague Dawley rats were randomly allocated into 2 groups: those receiving myocardial ischemia-reperfusion surgery (IR group, n =10) and surgical controls (Con group, n=10). These patterns of metabolic abnormalities in different brain regions were assessed using proton magnetic resonance spectroscopy (PMRS). RESULTS: Results assessed by echocardiography showed resultant cardiac dysfunction following heart ischemia-reperfusion. Compared with the control group, the altered metabolites in the IR group were taurine and choline, and differences mainly occurred in the thalamus and brainstem. CONCLUSIONS: Alterations in cerebral taurine and choline are important findings offering new avenues to explore neuroprotective strategies for myocardial ischemia-reperfusion injury. These results provide preliminary evidence for understanding the cerebral metabolic process underlying myocardial ischemia-reperfusion injury in rats.
Assuntos
Encéfalo/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Colina , Quitridiomicetos/metabolismo , Corpo Estriado/metabolismo , Ecocardiografia , Inositol/metabolismo , Masculino , Bulbo/metabolismo , Traumatismo por Reperfusão Miocárdica/diagnóstico por imagem , Lobo Parietal/metabolismo , Ponte/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Ratos , Ratos Sprague-Dawley , Taurina , Tálamo/metabolismo , Ácido gama-Aminobutírico/metabolismoRESUMO
Mechanisms of pruritus are implicated in the dysregulation of the metabolites in the spinal cord. We investigated pruritus behavioral testing in three groups of young adult male C57Bl/6 mice, including one group treated with normal saline, while the other groups intradermally injected with α-Me-5-HT (histamine-independent pruritogen), compound 48/80 (histamine-dependent pruritogen) at the nape skin of the neck, respectively. Proton nuclear magnetic resonance spectroscopy (MRS) was used to compare spinal metabolites from the vertebral cervical among three groups, and to study the association of spinal metabolite ratio and pruritus intensity. The MRS-measured N-acetylaspartate-to-myoinositol ratio (NAA/Ins) was significantly correlated with the number of scratches between normal saline group and 48/80 group or α-Me-5-HT group (both P<0.0001), indicating that NAA/Ins may be a robust surrogate marker of histamine-independent/dependent pruritogen. There was significant difference in Glu/Ins between normal saline group and 48/80 group (P=0.017), indicating that Glu/Ins may be a surrogate marker of histamine-dependent pruritogen, while GABA/Ins was highly significantly different between normal saline group and α-Me-5-HT group (P=0.008), suggesting that GABA/Ins may be a surrogate marker of histamine-independent pruritogen. MRS may reflect the extent of pruritus intensity elicited by α-Me-5-HT and compound 48/80 with sensitivity similar to the number of scratches, and above potential markers need to be further validated in pre-clinical and clinical treatment trials.
Assuntos
Ácido Aspártico/análogos & derivados , Inositol/análise , Prurido/diagnóstico por imagem , Serotonina/análogos & derivados , Medula Espinal/diagnóstico por imagem , p-Metoxi-N-metilfenetilamina/efeitos adversos , Animais , Ácido Aspártico/análise , Biomarcadores/análise , Injeções Intradérmicas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espectroscopia de Prótons por Ressonância Magnética , Prurido/induzido quimicamente , Serotonina/efeitos adversos , Medula Espinal/químicaRESUMO
There is now substantial evidence that myocardial ischemiareperfusion (IR) injury affects the spinal cord and brain, and that interactions may exist between these two systems. In the present study, the spinal cord proteomes were systematically analyzed after myocardial IR injury, in an attempt to identify the proteins involved in the processes. The myocardial IR injury rat model was first established by cross clamping the left anterior descending coronary artery for 30min ischemia, followed by reperfusion for 2 h, which resulted in a significant histopathological and functional myocardial injury. Then using the stable isotope dimethyl labeling quantitative proteomics strategy, a total of 2,362 shared proteins with a good distribution and correlation were successfully quantified. Among these proteins, 33 were identified which were upregulated and 57 were downregulated in the spinal cord after myocardial IR injury, which were involved in various biological processes, molecular function and cellular components. Based on these proteins, the spinal cord protein interaction network regulated by IR injury, including apoptosis, microtubule dynamics, stressactivated signaling and cellular metabolism was established. These heartspinal cord interactions help explain the apparent randomness of cardiac events and provide new insights into future novel therapies to prevent myocardial I/R injury.
Assuntos
Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Proteoma/metabolismo , Traumatismo por Reperfusão/metabolismo , Medula Espinal/metabolismo , Animais , Apoptose/fisiologia , Regulação para Baixo/fisiologia , Coração/fisiopatologia , Masculino , Proteômica/métodos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Regulação para Cima/fisiologiaRESUMO
In this study, we focused on several itchrelated molecules and receptors in the spinal cord with the goal of clarifying the specific mediators that regulate itch sensation. We investigated the involvement of serotonin receptors, opioid receptors, glia cell markers and chemokines (ligands and receptors) in models of acetone/ether/water (AEW) and diphenylcyclopropenone (DCP)induced chronic itch. Using reverse transcriptionquantitative polymerase chain reaction, we examined the expression profiles of these mediators in the lower cervical spinal cord (C58) of two models of chronic itch. We found that the gene expression levels of opioid receptor mu 1 (Oprm1), 5hydroxytryptamine receptor 1A (Htr1a) and 5hydroxytryptamine receptor 6 (Htr6) were upregulated. Among the chemokines, the expression levels of CC motif chemokine ligand (Ccl)21, Cxcl3 and Cxcl16 and their receptors, Ccr7, Cxcr2 and Cxcr6, were simultaneously upregulated in the spinal cords of the mice in both models of chronic itch. By contrast, the expression levels of Ccl2, Ccl3, Ccl4 and Ccl22 were downregulated. These findings indicate that multiple mediators, such as chemokines in the spinal cord, are altered and may be central candidates in further research into the mechanisms involved in the development of chronic itch.
Assuntos
Biomarcadores , Medula Cervical/metabolismo , Regulação da Expressão Gênica , Prurido/genética , Animais , Biópsia , Quimiocinas/metabolismo , Doença Crônica , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Imuno-Histoquímica , Masculino , Camundongos , Microglia/metabolismo , Neurônios/metabolismo , Prurido/diagnóstico , Prurido/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Pele/metabolismo , Pele/patologiaRESUMO
18F-labeled fluorodeoxyglucose positron emission tomography (18F-FDG PET) is the most sensitive tool for studying brain metabolism in vivo. We investigated the image patterns of 18F-FDG PET during reperfusion injury and correlated changes of whole brain blood flow utilizing a rat myocardial ischemia/reperfusion injury (MIRI) model. The results assessed by echocardiography indicated resultant cardiac dysfunction after ischemia-reperfusion in the rat heart. It was found that the average standardized uptake value (SUVaverage) of the whole brain was significantly decreased in model rats, and the glucose uptake of different brain regions including accumbens core/shell (Acb), left caudate putamen (LCPu), hippocampus (HIP), left hypothalamus (LHYP), olfactory (OLF), superior colliculus (SC), right midbrain (RMID), ventral tegmental area (VTA), inferior colliculus (IC) and left thalamus whole (LTHA) was significantly decreased in MIRI rats whereas no significant difference was found in the SUVaverage of amygdala (AMY), right CPu, RHYP, right HYP, left MID, right THA, pons and medulla oblongata (MO). These 18F-FDG PET data provide a reliable identification method for brain metabolic changes in rats with MIRI.
Assuntos
Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular , Traumatismo por Reperfusão Miocárdica/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Animais , Encéfalo/irrigação sanguínea , Modelos Animais de Doenças , Fluordesoxiglucose F18/farmacologia , Humanos , Traumatismo por Reperfusão Miocárdica/sangue , Traumatismo por Reperfusão Miocárdica/fisiopatologia , RatosRESUMO
OBJECTIVES: The mechanism behind spinal metabolites and myocardial ischemia-reperfusion (IR) injury is not well understood. Proton magnetic resonance spectroscopic analysis of spinal cord extracts provides a quick evaluation of the specific metabolic activity in rats with myocardial IR injury. We investigated the relationship between the IR-related variables and the changes in spinal metabolites. METHODS: Proton magnetic resonance spectroscopy (1H-MRS) was used to assess the spinal metabolites of adult rats with and without myocardial IR injury (n = 6 per group). Myocardial IR injury was reproduced using intermittent occlusion of the left anterior descending coronary artery. We studied the relationship between the metabolite ratio measurement and IR-related variables. All rats underwent 1H-MRS, with the ratio of interest placed in different spinal cord segments to measure levels of twelve metabolites including N-acetylaspartate (NAA), taurine (Tau), glutamate (Glu), gamma amino acid butyric acid (GABA), creatine (Cr), and myoinositol (MI), etc. Results: Rats with myocardial IR injury had higher concentration of Tau in the upper thoracic spinal cord (P < 0.05), and lower concentration of Gly and Glu in the cervical segment of the spinal cord (P < 0.05), when compared to the Control group. The ratios of glutamate/taurine (Glu/Tau), Glu/(GABA + Tau) and Glu/Total were significantly different between the IR group and the Control group in the upper thoracic spinal cord (P < 0.05). So were the ratios of Glu/(GABA + Tau) in the cervical segment (P < 0.05), and Glu/Tau and Glu/(GABA + Tau) in the lower thoracic spinal cord (P < 0.05). CONCLUSIONS: These findings suggest that myocardial IR injury may be related to spinal biochemical alterations. It is speculated that these observed changes in the levels of spinal metabolites may be involved in the pathogenesis and regulation of myocardial IR injury.
RESUMO
The identification of the expression patterns of long noncoding RNAs (lncRNAs) and mRNAs in the spinal cord under normal and cardiac ischemia/reperfusion (I/R) conditions is essential for understanding the genetic mechanisms underlying the pathogenesis of cardiac I/R injury. The present study used highthroughput RNA sequencing to investigate differential gene and lncRNA expression patterns in the spinal cords of rats during I/Rinduced cardiac injury. Male Sprague Dawley rats were assigned to the following groups: i) Control; ii) 2 h (2 h postreperfusion); and iii)v0.5 h (0.5 h postreperfusion). Further mRNA/lncRNA microarray analysis revealed that the expression profiles of lncRNA and mRNA in the spinal cords differed markedly between the control and 2 h groups, and in total 7,980 differentially expressed (>2fold) lncRNAs (234 upregulated, 7,746 downregulated) and 3,428 mRNAs (767 upregulated, 2,661 downregulated) were identified. Reverse transcriptionquantitative polymerase chain reaction analysis was performed to determine the expression patterns of several lncRNAs. The results indicated that the expression levels of lncRNA NONRATT025386 were significantly upregulated in the 2 and 0.5 h groups when compared with those in the control group, whereas the expression levels of NONRATT016113, NONRATT018298 and NONRATT018300 were elevated in the 2 h group compared with those in the control group; however, there was no statistically significant difference between the 0.5 h and control groups. Furthermore, the expression of lncRNA NONRATT002188 was significantly downregulated in the 0.5 and 2 h groups when compared with the control group. The present study determined the expression pattern of lncRNAs and mRNAs in rat spinal cords during cardiac I/R. It was suggested that lncRNAs and mRNAs from spinal cords may be novel therapeutic targets for the treatment of I/Rinduced cardiac injury.
Assuntos
Perfilação da Expressão Gênica , Traumatismo por Reperfusão Miocárdica/genética , RNA Longo não Codificante/genética , Medula Espinal/metabolismo , Animais , Regulação para Baixo , Masculino , Traumatismo por Reperfusão Miocárdica/patologia , Ratos Sprague-Dawley , Medula Espinal/patologia , Regulação para CimaRESUMO
The spinal origin of cholestatic itch in experimental obstructive jaundice mouse model remains poorly understood. In this study, the jaundice model was established by bile duct ligation (BDL) in mice, and differential gene expression patterns were analyzed in the lower thoracic spinal cord involved in cholestatic pruritus after BDL operation using high-throughput RNA sequencing. At 21st day after BDL, the expression levels of ENSRNOG00000060523, ENSRNOG00000058405 and ENSRNOG00000055193 mRNA were significantly up-regulated, and those of ENSRNOG00000042197, ENSRNOG00000008478, ENSRNOGOOOOOO19607, ENSRNOG00000020647, ENSRNOG00000046289, Gemin8, Serpina3n and Trim63 mRNA were significantly down-regulated in BDL group. The RNAseq data of selected mRNAs were validated by RT-qPCR. The expression levels of ENSRNOG00000042197, ENSRNOG00000008478, ENSRNOGOOOOOO 19607, ENSRNOG00000020647, ENSRNOG00000046289 and Serpina3n mRNA were significantly down-regulated in BDL group. This study suggested that cholestatic pruritus in experimental obstructive jaundice mouse model is related with in the changes of gene expression profiles in spinal cord.
Assuntos
Colestase/complicações , Prurido/genética , Medula Espinal/metabolismo , Transcriptoma , Animais , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Prurido/etiologia , Prurido/metabolismoRESUMO
A patient with obvious difficult airway who was received awake tracheal intubation using combination of an Airtraq® optical laryngoscope with smartphone and video flexible endoscope posted for elective surgery of tonsillectomy for OSAHS was reported. Our experiences strongly indicate that fully communication with patients, detailed preoperative assessment of airways and perfect plan, appropriate endotracheal intubation approach and devices play important roles in awake tracheal intubation in difficult airway.
RESUMO
PURPOSE OF REVIEW: After a warm-up period of imaging research, several modalities of positron emission tomography (PET) are under development for evaluating ischemic heart disease. RECENT FINDINGS: Several types of well-documented stem/progenitor PET imaging have been utilized for changes in myocardial blood flow and carbohydrate metabolism. Some recent experimental and human studies reported that these data may have beneficial effects on cardiac research. SUMMARY: Although the role of PET in the pathology of ischemic heart disease has not been sufficiently elucidated, many studies attempting imaging research of myocardial metabolism and neural regulation have been reported. Further studies are needed to better evaluate the potential of PET in evaluating ischemic heart disease.
RESUMO
To investigate autonomic substrates of brainstem-gut circuitry identified using trans-synaptic tracing with pseudorabies virus (PRV)-152, a strain that expresses enhanced green fluorescent protein, and PRV-614, a strain that expresses enhanced red fluorescent protein, injecting into the rat rectum wall. 3-7 days after PRV-152 injection, spinal cord and brainstem were removed and sectioned, and processed for PRV-152 visualization using immunofluorescence labeling against PRV-152. 6 days after PRV-614 injection, brainstem was sectioned and the neurochemical phenotype of PRV-614-positive neurons was identified using double immunocytochemical labeling against PRV-614 and TPH. We observed that the largest number of PRV-152- or PRV-614-positive neurons was located in the gigantocellular reticular nucleus (Gi), lateral paragigantocellular (LPGi), rostral ventrolateral reticular nucleus (RVL), solitary tract nucleus (Sol), locus coeruleus (LC), raphe magnus nucleus (RMg), subcoeruleus nucleus (SubCD). Double-labeled PRV-614/tryptophan hydroxylase (TPH) neurons were concentrated in the RMg, LPGi and Sol. These brainstem neurons are candidates for relaying autonomic command signals to the gut. The autonomic substrate of brainstem-gut circuitry likely plays an important role in mediating different aspects of stress behaviors.
RESUMO
AIM: Multifactors contribute to the development of postoperative cognitive dysfunction (POCD), of which the most important mechanism is neuroinflammation. Prostaglandin E2 (PGE2) is a key neuroinflammatory molecule and could modulate hippocampal synaptic transmission and plasticity. This study was designed to investigate whether PGE2 and its receptors signaling pathway were involved in the pathophysiology of POCD. METHODS: Sixteen-month old male C57BL/6J mice were exposed to laparotomy. Cognitive function was evaluated by fear conditioning test. The levels of PGE2 and its 4 distinct receptors (EP1-4) were assessed by biochemical analysis. Pharmacological or genetic methods were further applied to investigate the role of the specific PGE2 receptors. RESULTS: Here, we found that the transcription and translation level of the EP3 receptor in hippocampus increased remarkably, but not EP1, EP2, or EP4. Immunofluorescence results showed EP3 positive cells in the hippocampal CA1 region were mainly neurons. Furthermore, pharmacological blocking or genetic suppression of EP3 could alleviate surgery-induced hippocampus-dependent memory deficits and rescued the expression of plasticity-related proteins, including cAMP response element-binding protein (CREB), activity-regulated cytoskeletal-associated protein (Arc), and brain-derived neurotrophic factor (BDNF) in hippocampus. CONCLUSION: This study showed that PGE2-EP3 signaling pathway was involved in the progression of POCD and identified EP3 receptor as a promising treatment target.
Assuntos
Transtornos Cognitivos/etiologia , Transtornos Cognitivos/patologia , Dinoprostona/metabolismo , Regulação da Expressão Gênica/fisiologia , Hipocampo/metabolismo , Laparotomia/efeitos adversos , Detecção de Sinal Psicológico/fisiologia , Complexo Relacionado com a AIDS/genética , Complexo Relacionado com a AIDS/metabolismo , Envelhecimento , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Condicionamento Psicológico , Comportamento Exploratório , Medo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Complicações Pós-Operatórias/patologia , Complicações Pós-Operatórias/fisiopatologia , RNA Mensageiro/metabolismo , Receptores de Prostaglandina E Subtipo EP3/metabolismo , Transdução GenéticaRESUMO
The spinal origin of jaundice-induced altered peripheral nociceptive response poorly understood. In the current study, we aimed to first validate rats with bile duct ligation (BDL) as a jaundice model accompanied by altered peripheral nociceptive response, and then to analyze differential gene and lncRNA expression patterns in the lower thoracic spinal cord on different time courses after BDL operation by using high-throughput RNA sequencing. The differentially expressed genes (DEGs) identified using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis, followed by clustering analysis, Gene Ontology analysis and pathway analysis. As a result, a total of 2033 lncRNAs were differentially expressed 28d after BDL, in which 1545 probe sets were up-regulated and 488 probe sets were down-regulated, whereas a total of 2800 mRNAs were differentially expressed, in which 1548 probe sets were up-regulated and 1252 probe sets were down-regulated. The RNAseq data of select mRNAs and lncRNAs was validated by RT-qPCR. 28d after BDL, the expressions of lncRNA NONRATT002335 and NONRATT018085 were significantly up-regulated whereas the expression of lncRNA NONRATT025415, NONRATT025388 and NONRATT025409 was significantly down-regulated. 14d after BDL, the expressions of lncRNA NONRATT002335 and NONRATT018085 were significantly up-regulated; the expression of lncRNA NONRATT025415, NONRATT025388 and NONRATT025409 was significantly down-regulated. In conclusion, the present study showed that jaundice accompanied with decreased peripheral nociception involved in the changes of gene and lncRNA expression profiles in spinal cord. These findings extend current understanding of spinal mechanism for obstructive jaundice accompanied by decreased peripheral nociception.
RESUMO
Spinal cord plays a central role in the development and progression of pathogenesis of obstinate pruritus. In the current study, four groups of adult male C57Bl/6 mice were investigated; one group treated with saline, while the other groups intradermally injected with compound 48/80, histamine, α-Me-5-HT and capsaicin (algogenic substance), respectively. The intradermal microinjection of pruritic and algogenic compound resulted in a dramatic increase in the itch/algogenic behavior. Analysis of the microarray data showed that 15 genes in spinal cord (C5-C8) were differentially expressed between control group and 48/80 group, in which 9 genes were up-regulated and 6 genes were down-regulated. Furthermore, the results of RT-qPCR validation studies in C5-C8 spinal cord revealed that the 9 mRNA (Sgk1, Bag4, Fos, Ehd2, Edn3, Wdfy, Corin, 4921511E18Rik and 4930423020Rik) showed very different patterns for these different drugs, especially when comparing α-Me-5-HT and capsaicin. In three itch models, Fos and Ehd2 were up-regulated whereas Corin, 4921511E18Rik and 4930423020Rik were down-regulated. Furthermore, Corin and 4930423020Rik were down-regulated in itch model group compared to capsaicin group. Thus the application of microarray technique, coupled with RT-qPCR validation, further explain the mechanism behind itching evoked by pruritic compounds. It can contribute to our understanding of pharmacological methods for prevention or treatment of obstinate pruritus.
RESUMO
Understanding neuroanatomical sympathetic circuitry and neuronal connections from the caudal pedunculopontine tegmental nucleus to skeletal muscle is important to the study of possible mechanisms of pedunculopontine tegmental nucleus (PPTg) and cuneiform nucleus (CnF) that are involved in the regulation of skeletal muscle activity of the sympathetic pathway. The aim of this study was to use virus PRV-614 to trace the melanocortin-sympathetic neural pathways from PPTg and CnF to a hindlimb muscle (gastrocnemius) in spinally transected MC4R-GFP transgenic mice. PRV-614 was injected into the gastrocnemius muscle after receiving a complete spinal cord transection below the L2 level. PRV-614/MC4R-GFP and PRV-614/TPH dual-labeled neurons were found in the dissipated parts of PPTg (dpPPTg), but not between the compact parts of PPTg (cpPPTg) and CnF. It is proposed that a hierarchical pathway of neurons within the caudal pedunculopontine tegmental nucleus sends projections to the RVLM, which in turn projects onto the IML sympathetic preganglionic neurons that regulate muscle blood flow through melanocortin-sympathetic signals. Our results collectively indicate that MC4Rs expressed in caudal pedunculopontine tegmental nucleus may be involved in skeletal muscle activity of melanocortin-sympathetic pathways.
RESUMO
We used high-throughput RNA sequencing to analyze differential gene and lncRNA expression patterns in the lower thoracic spinal cord during ischemia/reperfusion (I/R)-induced acute kidney injury (AKI) in rats. We observed that of 32662 mRNAs, 4296 out were differentially expressed in the T8-12 segments of the spinal cord upon I/R-induced AKI. Among these, 62 were upregulated and 34 were downregulated in response to I/R (FDR < 0.05, |log2FC| > 1). Further, 52 differentially expressed lncRNAs (35 upregulated and 17 downregulated) were identified among 3849 lncRNA transcripts. The differentially expressed mRNAs were annotated as "biological process," "cellular components" and "molecular functions" through gene ontology enrichment analysis. KEGG pathway enrichment analysis showed that cell cycle and renin-angiotensin pathways were upregulated in response to I/R, while protein digestion and absorption, hedgehog, neurotrophin, MAPK, and PI3K-Akt signaling were downregulated. The RNA-seq data was validated by qRT-PCR and western blot analyses of select mRNAs and lncRNAs. We observed that Bax, Caspase-3 and phospho-AKT were upregulated and Bcl-2 was downregulated in the spinal cord in response to renal injury. We also found negative correlations between three lncRNAs (TCONS_00042175, TCONS_00058568 and TCONS_00047728) and the degree of renal injury. These findings provide evidence for differential expression of lncRNAs and mRNAs in the lower thoracic spinal cord following I/R-induced AKI in rats and suggest potential clinical applicability.